Glo M.

Precalculus

1 week, 1 day ago

Complete the square to determine whether the graph of the equation is an ellipse, a parabola, a hyperbola, a degenerate conic, or results in no solution.
x2−y2=6(x−y)+1" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; user-select: none; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 16px; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">x2−y2=6(x−y)+1x2−y2=6(x−y)+1
ellipse parabola hyperbola degenerate conic no solution If the graph is an ellipse, find the center, foci, vertices, and lengths of the major and minor axes. If it is a parabola, find the focus, vertex, and directrix. If it is a hyperbola, find the center, foci, vertices, and asymptotes. (Enter your answers for asymptotes as a comma-separated list of equations. If an answer does not exist, enter DNE.) center focus