Let $\mathbf{u}$ and $\mathbf{v}$ be eigenvectors of a matrix $A,$ with corresponding eigenvalues $\lambda$ and $\mu,$ and let $c_{1}$ and $c_{2}$ be scalars. Define $\mathbf{x}_{k}=c_{1} \lambda^{k} \mathbf{u}+c_{2} \mu^{k} \mathbf{v} \quad(k=0,1,2, \ldots)$
a. What is $\mathbf{x}_{k+1},$ by definition?
b. Compute $A \mathbf{x}_{k}$ from the formula for $\mathbf{x}_{k},$ and show that $A \mathbf{x}_{k}=\mathbf{x}_{k+1} .$ This calculation will prove that the sequence $\left\{\mathbf{x}_{k}\right\}$ defined above satisfies the difference equation $\mathbf{x}_{k+1}=A \mathbf{x}_{k}(k=0,1,2, \ldots)$