Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

  • Home
  • Textbooks
  • Calculus: Early Transcendentals
  • Functions and Models

Calculus: Early Transcendentals

James Stewart

Chapter 1

Functions and Models - all with Video Answers

Educators

+ 330 more educators

Section 5

Inverse Functions and Logarithms

01:40

Problem 1

(a) What is a one-to-one function?
(b) How can you tell from the graph of a function whether it is one-to-one?

Heather Zimmers
Heather Zimmers
Numerade Educator
02:05

Problem 2

(a) Suppose $ f $ is a one-to-one function with domain $ A $ and range $ B $. How is the inverse function $ f^{-1} $ defined? What is the domain of $ f^{-1} $? What is the range of $ f^{-1} $?
(b) If you are given a formula for $ f $, how do you find a formula for $ f^{-1} $?
(c) If you are given the graph of $ f $, how do you find the graph of $ f^{-1} $?

Heather Zimmers
Heather Zimmers
Numerade Educator
00:28

Problem 3

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:25

Problem 4

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:52

Problem 5

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:52

Problem 6

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:51

Problem 7

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:49

Problem 8

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:51

Problem 9

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$ f(x) = 2x - 3 $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:47

Problem 10

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$ f(x) = x^4 - 16 $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:05

Problem 11

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$ g(x) = 1 - \sin x $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:47

Problem 12

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$ g(x) = \sqrt[3]{x} $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:47

Problem 13

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$ f(t) $ is the height of a football $ t $ seconds after kickoff.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:56

Problem 14

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$ f(t) $ is your height at age $ t $.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:52

Problem 15

Assume that $ f $ is a one-to-one function.

(a) If $ f(6) = 17 $ , what is $ f^{-1} (17) $?
(a) If $ f^{-1} (3) = 2 $ , what is $ f(2) $?

Heather Zimmers
Heather Zimmers
Numerade Educator
01:15

Problem 16

If $ f(x) = x^5 + x^3 + x $ , find $ f^{-1} (3) $ and $ f (f^{-1} (2)) $.

Heather Zimmers
Heather Zimmers
Numerade Educator
01:04

Problem 17

If $ g(x) = 3 + x + e^x $ , find $ g^{-1} (4) $.

Heather Zimmers
Heather Zimmers
Numerade Educator
02:19

Problem 18

The graph of $ f $ is given.
(a) Why is $ f $ one-to-one?
(b) What are the domain and range of $ f^{-1} $ ?
(c) What is the value of $ f^{-1} (2) $?
(d) Estimate the value of $ f^{-1} (0) $.

Heather Zimmers
Heather Zimmers
Numerade Educator
02:04

Problem 19

The formula $ C = \frac{5}{9} (F - 32) $ , where $ F \ge -459.67 $, expresses the Celsius temperature $ C $ as a function of the Fahrenheit temperature $ F $. Find a formula for the inverse function and interpret it. What is the domain of the inverse function?

Heather Zimmers
Heather Zimmers
Numerade Educator
01:58

Problem 20

In the theory of relativity, the mass of a particle with speed $ v $ is

$$ m = f(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} $$

where $ m_0 $ is the rest mass of the particle and $ c $ is the speed of light in a vacuum. Find the inverse function of $ f $ and explain its meaning.

Heather Zimmers
Heather Zimmers
Numerade Educator
01:50

Problem 21

Find a formula for the inverse of the function.

$ f(x) = 1 + \sqrt{2 + 3x} $

Mary Wakumoto
Mary Wakumoto
Numerade Educator
02:01

Problem 22

Find a formula for the inverse of the function.

$ f(x) = \dfrac{4x - 1}{2x + 3} $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:11

Problem 23

Find a formula for the inverse of the function.

$ f(x) = e^{2x - 1} $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:01

Problem 24

Find a formula for the inverse of the function.

$ y = x^2 - x $ , $ x \ge \frac{1}{2} $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:45

Problem 25

Find a formula for the inverse of the function.

$ y = \ln (x + 3) $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:45

Problem 26

Find a formula for the inverse of the function.

$ y = \dfrac{1 - e^{-x}}{1 + e^{-x}} $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:55

Problem 27

Find an explicit formula for $ f^{-1} $ and use it to graph $ f^{-1} $, $ f $, and the line $ y = x $ on the same screen. To check your work, see whether the graphs of $ f $ and $ f^{-1} $ are reflections about the line.

$ f(x) = \sqrt{4x +3} $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:13

Problem 28

Find an explicit formula for $ f^{-1} $ and use it to graph $ f^{-1} $, $ f $, and the line $ y = x $ on the same screen. To check your work, see whether the graphs of $ f $ and $ f^{-1} $ are reflections about the line.

$ f(x) = 1 + e^{-x} $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:57

Problem 29

Use the given graph of $ f $ to sketch the graph of $ f^{-1} $.

Heather Zimmers
Heather Zimmers
Numerade Educator
00:52

Problem 30

Use the given graph of $ f $ to sketch the graph of $ f^{-1} $.

Heather Zimmers
Heather Zimmers
Numerade Educator
02:23

Problem 31

Let $ f(x) = \sqrt{1 - x^2} $ , $ 0 \le x \le 1 $.

(a) Find $ f^{-1} $. How is it related to $ f $ ?
(b) Identify the graph of $ f $ and explain your answer to part (a).

Heather Zimmers
Heather Zimmers
Numerade Educator
01:30

Problem 32

Let $ g(x) = \sqrt[3]{1 - x^3} $.

(a) Find $ g^{-1} $ . How is it related to $ g $?
(b) Graph $ g $. How do you explain your answer to part (a)?

Heather Zimmers
Heather Zimmers
Numerade Educator
01:55

Problem 33

(a) How is the logarithmic function $ y = \log_b x $ defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the function $ y = \log_b x $ if $ b > 1 $.

Heather Zimmers
Heather Zimmers
Numerade Educator
01:16

Problem 34

(a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function and the natural exponential function with a common set of axes.

Mary Wakumoto
Mary Wakumoto
Numerade Educator
00:29

Problem 35

Find the exact value of each expression.

(a) $ \log_2 32 $
(b) $ \log_8 2 $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:47

Problem 36

Find the exact value of each expression.

(a) $ \log_5 \frac{1}{125} $
(b) $ \ln (\frac{1}{e^2}) $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:12

Problem 37

Find the exact value of each expression.

(a) $ \log_{10} 40 + \log_{10} 2.5 $
(b) $ \log_8 60 - \log_8 3 - \log_8 5 $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:22

Problem 38

Find the exact value of each expression.

(a) $ e^{-ln 2} $
(b) $ e^{\ln}^{(\ln e^3)} $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:40

Problem 39

Express the given quantity as a single logarithm.

$ \ln 10 + 2 \ln 5 $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:01

Problem 40

Express the given quantity as a single logarithm.

$ \ln b + 2 \ln c - 3 \ln d $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:45

Problem 41

Express the given quantity as a single logarithm.

$ \frac{1}{3} \ln (x + 2)^3 + \frac{1}{2} [\ln x - \ln (x^2 + 3x + 2)^2] $

Heather Zimmers
Heather Zimmers
Numerade Educator
00:54

Problem 42

Use Formula 10 to evaluate each logarithm correct to six decimal places.

(a) $ \log_5 10 $
(b) $ \log_3 57 $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:42

Problem 43

Use Formula 10 to graph the given functions on a common screen. How are these graphs related?

$ y = \log_{1.5} x $ , $ y = \ln x $ , $ y = \log_{10} x $ , $ y = \log_{50} x $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:57

Problem 44

Use Formula 10 to graph the given functions on a common screen. How are these graphs related?

$ y = \ln x $ , $ y = \log_{10} x $ , $ y = e^x $ , $ y = 10^x $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:48

Problem 45

Suppose that the graph of $ y = \log_2 x $ is drawn on a coordinate grid where the unit of measurement is an inch. How many miles to the right of the origin do we have to move before the height of the curve reaches 3 ft?

Heather Zimmers
Heather Zimmers
Numerade Educator
02:47

Problem 46

Compare the functions $ f(x) = x^{0.1} $ and $ g(x) = \ln x $ by graphing both $ f $ and $ g $ in several viewing rectangles. When does the graph of $ f $ finally surpass the graph of $ g $?

Heather Zimmers
Heather Zimmers
Numerade Educator
02:09

Problem 47

Make a rough sketch of the graph of each function. Do not use a calculator. Just use the graphs given in Figures 12 and 13 and, if necessary, the transformations of Section 1.3.

(a) $ y = \log_{10} (x + 5) $
(b) $ y = -\ln x $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:25

Problem 48

Make a rough sketch of the graph of each function. Do not use a calculator. Just use the graphs given in Figures 12 and 13 and, if necessary, the transformations of Section 1.3.

(a) $ y = \ln (-x) $
(b) $ y = \ln \mid x \mid $

Heather Zimmers
Heather Zimmers
Numerade Educator
03:07

Problem 49

(a) What are the domain and range of $ f $?
(b) What is the x-intercept of the graph of $ f $?
(c) Sketch the graph of $ f $.

$ f(x) = \ln x + 2 $

Heather Zimmers
Heather Zimmers
Numerade Educator
03:22

Problem 50

(a) What are the domain and range of $ f $?
(b) What is the x-intercept of the graph of $ f $?
(c) Sketch the graph of $ f $.

$ f(x) = \ln (x - 1) - 1 $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:03

Problem 51

Solve each equation for x.

(a) $ e^{7 - 4x} = 6 $
(b) $ \ln (3x - 10) = 2 $

Mary Wakumoto
Mary Wakumoto
Numerade Educator
01:59

Problem 52

Solve each equation for x.

(a) $ \ln (x^2 - 1) = 3 $
(b) $ e^{2x} - 3e^x + 2 = 0 $

Heather Zimmers
Heather Zimmers
Numerade Educator
04:15

Problem 53

Solve each equation for x.

(a) $ 2^{x - 5} = 3 $
(b) $ \ln x + \ln (x - 1) = 1 $

Mary Wakumoto
Mary Wakumoto
Numerade Educator
01:49

Problem 54

Solve each equation for x.

(a) $ \ln (\ln x) = 1 $
(b) $ e^{ax} = Ce^{bx} $ , where $ a \neq b $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:44

Problem 55

Solve each inequality for x.

(a) $ \ln x < 0 $
(b) $ e^x > 5 $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:06

Problem 56

Solve each inequality for x.

(a) $ 1< e^{3x - 1} < 2 $
(b) $ 1 - 2 \ln x < 3 $

Mary Wakumoto
Mary Wakumoto
Numerade Educator
02:22

Problem 57

(a) We must have $e^{x}-3>0 \Leftrightarrow e^{x}>3 \Leftrightarrow x>\ln 3$. Thus, the domain of $f(x)=\ln \left(e^{x}-3\right)$ is $(\ln 3, \infty)$.
(b) $y=\ln \left(e^{x}-3\right) \Rightarrow e^{y}=e^{x}-3 \Rightarrow e^{x}=e^{y}+3 \Rightarrow x=\ln \left(e^{y}+3\right),$ so $f^{-1}(x)=\ln \left(e^{x}+3\right)$.
Now $e^{x}+3>0 \Rightarrow e^{x}>-3,$ which is true for any real $x,$ so the domain of $f^{-1}$ is $\mathbb{R}$.

Heather Zimmers
Heather Zimmers
Numerade Educator
01:41

Problem 58

(a) What are the values of $ e^{\ln 300} $ and $ \ln (e^{300}) $?
(b) Use your calculator to evaluate $ e^{\ln 300} $ and $ \ln (e^{300}) $. What do you notice? Can you explain why the calculator has trouble?

Heather Zimmers
Heather Zimmers
Numerade Educator
02:40

Problem 59

Graph the function $ f(x) = \sqrt{x^3 + x^2 + x +1} $ and explain why it is one-to-one. Then use a computer algebra system to find an explicit expression for $ f^{-1} (x) $. (Your CAS will produce three possible expressions. Explain why two of them are irrelevant in this context.)

Clarissa Noh
Clarissa Noh
Numerade Educator
03:05

Problem 60

(a) If $ g(x) = x^6 + x^4 $ , $ x \ge 0 $, use a computer algebra system to find an expression for
$ g^{-1} (x) $.
(b) Use the expression in part (a) to graph $ y = g(x) $ , $ y = x $ , and $ y = g^{-1} (x) $ on the same screen.

Clarissa Noh
Clarissa Noh
Numerade Educator
03:34

Problem 61

If a bacteria population starts with 100 bacteria and doubles every three hours, then the number of bacteria after $ t $ hours is $ n = f(t) = 100 \cdot 2^\frac{t}{3} $.

(a) Find the inverse of this function and explain its meaning.
(b) When will the population reach 50,000?

Heather Zimmers
Heather Zimmers
Numerade Educator
03:33

Problem 62

When a camera flash goes off, the batteries immediately begin to recharge the flash's capacitor, which stores electric charge given by
$$ Q(t) = Q_0 (1 - e^{\frac{-t}{a}}) $$
(The maximum charge capacity is $ Q_0 $ and $ t $ is measured in seconds.)
(a) Find the inverse of this function and explain its meaning.
(b) How long does it take to recharge the capacitor to 90% of capacity if $ a = 2 $?

Heather Zimmers
Heather Zimmers
Numerade Educator
01:42

Problem 63

Find the exact value of each expression.

(a) $ \cos^{-1} (-1) $
(b) $ \sin^{-1} (0.5) $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:18

Problem 64

Find the exact value of each expression.

(a) $ \tan^{-1} \sqrt{3} $
(b) $ \arctan (-1) $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:13

Problem 65

Find the exact value of each expression.

(a) $ \csc^{-1} \sqrt{2} $
(b) $ \arcsin 1 $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:24

Problem 66

Find the exact value of each expression.

(a) $ \sin^{-1} (\frac{-1}{\sqrt{2}}) $
(b) $ \cos^{-1} (\frac{\sqrt{3}}{2}) $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:29

Problem 67

Find the exact value of each expression.

(a) $ \cot^{-1} (-\sqrt{3}) $
(b) $ \sec^{-1} 2 $

Heather Zimmers
Heather Zimmers
Numerade Educator
03:36

Problem 68

Find the exact value of each expression.

(a) $ \arcsin (\sin (\frac{5\pi}{4})) $
(b) $ \cos (2 \sin^{-1} (\frac{5}{13})) $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:24

Problem 69

Prove that $ \cos (\sin^{-1} x) = \sqrt{1 - x^2} $.

Heather Zimmers
Heather Zimmers
Numerade Educator
01:09

Problem 70

Simplify the expression.

$ \tan (\sin^{-1} x) $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:01

Problem 71

Simplify the expression.

$ \sin(\tan^{-1} x) $

Heather Zimmers
Heather Zimmers
Numerade Educator
02:28

Problem 72

Simplify the expression.

$ \sin (2 \arccos x) $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:28

Problem 73

Graph the given functions on the same screen. How are these graphs related?

$ y = \sin x $ , $ \frac{-\pi}{2} \le x \le \frac{\pi}{2} $ ; $ \sin^{-1} x $ ; $ y = x $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:15

Problem 74

Graph the given functions on the same screen. How are these graphs related?

$ y = \tan x $ , $ \frac{-\pi}{2} < x < \frac{\pi}{2} $ ; $ \tan^{-1} x $ ; $ y = x $

Heather Zimmers
Heather Zimmers
Numerade Educator
01:22

Problem 75

Find the domain and range of the function
$$ g(x) = \sin^{-1} (3x + 1) $$

Heather Zimmers
Heather Zimmers
Numerade Educator
02:23

Problem 76

(a) Graph the function $ f(x) = \sin (\sin^{-1} x) $ and explain the appearance of the graph.
(b) Graph the function $ g(x) = \sin^{-1} (\sin x) $. How do you explain the appearance of this graph?

Jeffrey Payo
Jeffrey Payo
Numerade Educator
04:08

Problem 77

(a) If we shift a curve to the left, what happens to its reflection about the line $ y = x $? In view of this geometric principle, find an expression for the inverse of $ g(x) = f (x + c) $, where $ f $ is a one-to-one function.
(b) Find an expression for the inverse of $ h(x) = f (cx) $ , where $ c \neq 0 $.

Heather Zimmers
Heather Zimmers
Numerade Educator

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started