College Algebra

Educators

Problem 1

The inequality $-1<x<3$ can be written in interval notation as ______.

Check back soon!

Problem 2

If $x=-2,$ the value of the expression $3 x^{2}-5 x+\frac{1}{x}$ is _______.

Check back soon!

Problem 3

The domain of the variable in the expression $\frac{x-3}{x+4}$ is _______.

Check back soon!

Problem 4

Solve the inequality: $3-2 x>5 .$ Graph the solution set. ______

Check back soon!

Problem 5

If $f$ is a function defined by the equation $y=f(x),$ then $x$ is called the ______ variable and $y$ is the ______ variable.

Check back soon!

Problem 6

The set of all images of the elements in the domain of a function is called the _______

Check back soon!

Problem 7

If the domain of $f$ is all real numbers in the interval $[0,7]$ and the domain of $g$ is all real numbers in the interval $[-2,5],$ the domain of $f+g$ is all real numbers in the interval ________.

Check back soon!

Problem 8

The domain of $\frac{f}{g}$ consists of numbers $x$ for which g(x) ______ 0 that are in the domains of both _____ and _____.

Check back soon!

Problem 9

If $f(x)=x+1$ and $g(x)=x^{3},$ then ______ =$x^{3}-(x+1)$

Check back soon!

Problem 10

True or False Every relation is a function.

Check back soon!

Problem 11

True or False The domain of $(f \cdot g)(x)$ consists of the numbers $x$ that are in the domains of both $f$ and $g .$

Check back soon!

Problem 12

True or False The independent variable is sometimes referred to as the argument of the function.

Check back soon!

Problem 13

True or False If no domain is specified for a function $f,$ then the domain of $f$ is taken to be the set of real numbers.

Check back soon!

Problem 14

True or False The domain of the function $f(x)=\frac{x^{2}-4}{x}$ is $\{x | x \neq \pm 2\}$

Check back soon!

Problem 15

Determine whether each relation represents a function. For each function, state the domain and range.
(function can't copy)

Check back soon!

Problem 16

Determine whether each relation represents a function. For each function, state the domain and range.
(function can't copy)

Check back soon!

Problem 17

Determine whether each relation represents a function. For each function, state the domain and range.
(function can't copy)

Check back soon!

Problem 18

Determine whether each relation represents a function. For each function, state the domain and range.
(function can't copy)

Check back soon!

Problem 19

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(2,6),(-3,6),(4,9),(2,10)\}$$

Check back soon!

Problem 20

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(-2,5),(-1,3),(3,7),(4,12)\}$$

Check back soon!

Problem 21

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(1,3),(2,3),(3,3),(4,3)\}$$

Check back soon!

Problem 22

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(0,-2),(1,3),(2,3),(3,7)\}$$

Check back soon!

Problem 23

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(-2,4),(-2,6),(0,3),(3,7)\}$$

Check back soon!

Problem 24

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(-4,4),(-3,3),(-2,2),(-1,1),(-4,0)\}$$

Check back soon!

Problem 25

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(-2,4),(-1,1),(0,0),(1,1)\}$$

Check back soon!

Problem 26

Determine whether each relation represents a function. For each function, state the domain and range.
$$\{(-2,16),(-1,4),(0,3),(1,4)\}$$

Check back soon!

Problem 27

Determine whether the equation defines y as a function of x.
$$y=x^{2}$$

Check back soon!

Problem 28

Determine whether the equation defines y as a function of x.
$$y=x^{3}$$

Check back soon!

Problem 29

Determine whether the equation defines y as a function of x.
$$y=\frac{1}{x}$$

Check back soon!

Problem 30

Determine whether the equation defines y as a function of x.
$$y=|x|$$

Check back soon!

Problem 31

Determine whether the equation defines y as a function of x.
$$y^{2}=4-x^{2}$$

Check back soon!

Problem 32

Determine whether the equation defines y as a function of x.
$$y=\pm \sqrt{1-2 x}$$

Check back soon!

Problem 33

Determine whether the equation defines y as a function of x.
$$x=y^{2}$$

Check back soon!

Problem 34

Determine whether the equation defines y as a function of x.
$$x+y^{2}=1$$

Check back soon!

Problem 35

Determine whether the equation defines y as a function of x.
$$y=2 x^{2}-3 x+4$$

Check back soon!

Problem 36

Determine whether the equation defines y as a function of x.
$$y=\frac{3 x-1}{x+2}$$

Check back soon!

Problem 37

Determine whether the equation defines y as a function of x.
$$2 x^{2}+3 y^{2}=1$$

Check back soon!

Problem 38

Determine whether the equation defines y as a function of x.
$$x^{2}-4 y^{2}=1$$

Check back soon!

Problem 39

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=3 x^{2}+2 x-4$$

Check back soon!

Problem 40

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=-2 x^{2}+x-1$$

Check back soon!

Problem 41

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=\frac{x}{x^{2}+1}$$

Check back soon!

Problem 42

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=\frac{x^{2}-1}{x+4}$$

Check back soon!

Problem 43

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=|x|+4$$

Check back soon!

Problem 44

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=\sqrt{x^{2}+x}$$

Check back soon!

Problem 45

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=\frac{2 x+1}{3 x-5}$$

Check back soon!

Problem 46

Find the following for each function:
(a) $f(0)$
(b) $f(1)$
(c) $f(-1)$
(d) $f(-x)$
(e) $-f(x)$
(f) $f(x+1)$
(g) $f(2 x)$
(h) $f(x+h)$
$$f(x)=1-\frac{1}{(x+2)^{2}}$$

Check back soon!

Problem 47

Find the domain of each function.
$$f(x)=-5 x+4$$

Check back soon!

Problem 48

Find the domain of each function.
$$f(x)=x^{2}+2$$

Check back soon!

Problem 49

Find the domain of each function.
$$f(x)=\frac{x}{x^{2}+1}$$

Check back soon!

Problem 50

Find the domain of each function.
$$f(x)=\frac{x^{2}}{x^{2}+1}$$

Check back soon!

Problem 51

Find the domain of each function.
$$g(x)=\frac{x}{x^{2}-16}$$

Check back soon!

Problem 52

Find the domain of each function.
$$h(x)=\frac{2 x}{x^{2}-4}$$

Check back soon!

Problem 53

Find the domain of each function.
$$F(x)=\frac{x-2}{x^{3}+x}$$

Check back soon!

Problem 54

Find the domain of each function.
$$G(x)=\frac{x+4}{x^{3}-4 x}$$

Check back soon!

Problem 55

Find the domain of each function.
$$h(x)=\sqrt{3 x-12}$$

Check back soon!

Problem 56

Find the domain of each function.
$$G(x)=\sqrt{1-x}$$

Check back soon!

Problem 57

Find the domain of each function.
$$f(x)=\frac{4}{\sqrt{x-9}}$$

Check back soon!

Problem 58

Find the domain of each function.
$$f(x)=\frac{x}{\sqrt{x-4}}$$

Check back soon!

Problem 59

Find the domain of each function.
$$p(x)=\sqrt{\frac{2}{x-1}}$$

Check back soon!

Problem 60

Find the domain of each function.
$$q(x)=\sqrt{-x-2}$$

Check back soon!

Problem 61

Find the domain of each function.
$$P(t)=\frac{\sqrt{t-4}}{3 t-21}$$

Check back soon!

Problem 62

Find the domain of each function.
$$h(z)=\frac{\sqrt{z+3}}{z-2}$$

Check back soon!

Problem 63

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=3 x+4 ; \quad g(x)=2 x-3$$

Check back soon!

Problem 64

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=2 x+1 ; \quad g(x)=3 x-2$$

Check back soon!

Problem 65

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=x-1 ; \quad g(x)=2 x^{2}$$

Check back soon!

Problem 66

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=2 x^{2}+3 ; \quad g(x)=4 x^{3}+1$$

Check back soon!

Problem 67

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=\sqrt{x} ; \quad g(x)=3 x-5$$

Check back soon!

Problem 68

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=|x| ; \quad g(x)=x$$

Check back soon!

Problem 69

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=|x| ; \quad g(x)=x$$

Check back soon!

Problem 70

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=\sqrt{x-1} ; \quad g(x)=\sqrt{4-x}$$

Check back soon!

Problem 71

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=\frac{2 x+3}{3 x-2} ; \quad g(x)=\frac{4 x}{3 x-2}$$

Check back soon!

Problem 72

For the given functions $f$ and $g,$ find the following. For parts ( $a$ )-( $d$ ), also find the domain.
(a)$(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d)$\left(\frac{f}{g}\right)(x)$
(e)$(f+g)(3)$
(f)$(f-g)(4)$
(g) $(f \cdot g)(2)$
( h)$\left(\frac{f}{g}\right)(1)$
$$f(x)=\sqrt{x+1} ; \quad g(x)=\frac{2}{x}$$

Check back soon!

Problem 73

Given $f(x)=3 x+1$ and $(f+g)(x)=6-\frac{1}{2} x,$ find the function $g .$

Check back soon!

Problem 74

Given $f(x)=\frac{1}{x}$ and $\left(\frac{f}{g}\right)(x)=\frac{x+1}{x^{2}-x},$ find the function $g$

Check back soon!

Problem 75

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=4 x+3$$

Check back soon!

Problem 76

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=-3 x+1$$

Check back soon!

Problem 77

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=x^{2}-x+4$$

Check back soon!

Problem 78

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=3 x^{2}-2 x+6$$

Check back soon!

Problem 79

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=\frac{1}{x^{2}}$$

Check back soon!

Problem 80

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=\frac{1}{x+3}$$

Check back soon!

Problem 81

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=\sqrt{x}$$
[Hint: Rationalize the numerator.

Check back soon!

Problem 82

Find the difference quotient of $f$; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0,$ for each function. Be sure to simplify.
$$f(x)=\sqrt{x+1}$$

Check back soon!

Problem 83

If $f(x)=2 x^{3}+A x^{2}+4 x-5$ and $f(2)=5,$ what is the value of $A ?$

Check back soon!

Problem 84

If $f(x)=3 x^{2}-B x+4$ and $f(-1)=12,$ what is the value of $B ?$

Check back soon!

Problem 85

If $f(x)=\frac{3 x+8}{2 x-A}$ and $f(0)=2,$ what is the value of $A ?$

Check back soon!

Problem 86

If $f(x)=\frac{2 x-B}{3 x+4}$ and $f(2)=\frac{1}{2},$ what is the value of $B ?$

Check back soon!

Problem 87

If $f(x)=\frac{2 x-A}{x-3}$ and $f(4)=0,$ what is the value of $A ?$ Where is $f$ not defined?

Check back soon!

Problem 88

If $f(x)=\frac{x-B}{x-A}, f(2)=0$ and $f(1)$ is undefined, what are the values of $A$ and $B ?$

Check back soon!

Problem 89

Geometry Express the area $A$ of a rectangle as a function of the length $x$ if the length of the rectangle is twice its width.

Check back soon!

Problem 90

Geometry Express the area $A$ of an isosceles right triangle as a function of the length $x$ of one of the two equal sides.

Check back soon!

Check back soon!