Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

  • Home
  • Textbooks
  • Calculus: Early Transcendentals
  • Infinite Sequences and Series

Calculus: Early Transcendentals

James Stewart

Chapter 11

Infinite Sequences and Series - all with Video Answers

Educators

JH
EI

Section 3

The Integral Test and Estimates of Sums

02:38

Problem 1

1. Draw a picture to show that
$ \displaystyle \sum_{n = 2}^{\infty} \frac {1}{n^{1.3}} < \int^{\infty}_1 \frac {1}{x^{1.3}} dx $
What can you conclude about the series?

Clayton Craig
Clayton Craig
Numerade Educator
02:22

Problem 2

Suppose $ f $ is a continuous positive decreasing function for $ x \ge 1 $ and $ a_n = f(n). $ By drawing a picture, rank the following three quantities in increasing order.

$ \int^6_1 f(x) dx \displaystyle \sum_{i = 1}^{5} a_i \displaystyle \sum_{i = 2}^6 a_i $

Clayton Craig
Clayton Craig
Numerade Educator
02:17

Problem 3

Use the Integral Test to determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} n^{-3} $

Clayton Craig
Clayton Craig
Numerade Educator
01:21

Problem 4

Use the Integral Test to determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} n^{-0.3} $

Clayton Craig
Clayton Craig
Numerade Educator
02:22

Problem 5

Use the Integral Test to determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {2}{5n - 1} $

Clayton Craig
Clayton Craig
Numerade Educator
02:52

Problem 6

Use the Integral Test to determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {1}{\left(3n - 1 \right)^34} $

Clayton Craig
Clayton Craig
Numerade Educator
03:00

Problem 7

Use the Integral Test to determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {n}{n^2 + 1} $

Nick Johnson
Nick Johnson
Numerade Educator
03:19

Problem 8

Use the Integral Test to determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} n^2 e^{-n^3} $

Madi Sousa
Madi Sousa
Numerade Educator
00:49

Problem 9

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n^{\sqrt 2}} $

Clayton Craig
Clayton Craig
Numerade Educator
00:50

Problem 10

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 3}^{\infty} n^{-0.9999} $

Madi Sousa
Madi Sousa
Numerade Educator
01:10

Problem 11

Determine whether the series is convergent or divergent.
$ 1 + \frac {1}{8} + \frac {1}{27} + \frac {1}{64} + \frac {1}{125} + \cdot \cdot \cdot $

Madi Sousa
Madi Sousa
Numerade Educator
05:31

Problem 12

Determine whether the series is convergent or divergent.
$ \frac {1}{5} + \frac {1}{7} + \frac {1}{9} + \frac {1}{11} + \frac {1}{13} + \cdot \cdot \cdot $

Chris Trentman
Chris Trentman
Numerade Educator
02:59

Problem 13

Determine whether the series is convergent or divergent.
$ \frac {1}{3} + \frac {1}{7} + \frac {1}{11} + \frac {1}{15} + \frac {1}{19} + \cdot \cdot \cdot $

Clayton Craig
Clayton Craig
Numerade Educator
00:49

Problem 14

Determine whether the series is convergent or divergent.
$ 1 + \frac {1}{2 \sqrt 2} + \frac {1}{ 3 \sqrt 3} + \frac {1}{4 \sqrt 4} + \frac {1}{5 \sqrt 5} + \cdot \cdot \cdot $

Clayton Craig
Clayton Craig
Numerade Educator
02:13

Problem 15

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {\sqrt n + 4}{n^2} $

Clayton Craig
Clayton Craig
Numerade Educator
02:02

Problem 16

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {\sqrt n}{1 + n^{3/2}} $

JH
J Hardin
Numerade Educator
01:10

Problem 17

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n^2 + 4} $

Carson Merrill
Carson Merrill
Numerade Educator
01:32

Problem 18

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n^2 + 2n + 2} $

Carson Merrill
Carson Merrill
Numerade Educator
01:10

Problem 19

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {n^3}{n^4 + 4} $

Carson Merrill
Carson Merrill
Numerade Educator
01:52

Problem 20

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 3}^{\infty} \frac {3n - 4}{n^2 - 2n} $

Clayton Craig
Clayton Craig
Numerade Educator
01:57

Problem 21

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 2}^{\infty} \frac {1}{n \ln n} $

Clayton Craig
Clayton Craig
Numerade Educator
02:22

Problem 22

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 2}^{\infty} \frac {\ln n}{n^2} $

Clayton Craig
Clayton Craig
Numerade Educator
01:36

Problem 23

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{k = 1}^{\infty} ke^{-k} $

Clayton Craig
Clayton Craig
Numerade Educator
02:02

Problem 24

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{k = 1}^{\infty} ke^{-k^2} $

Clayton Craig
Clayton Craig
Numerade Educator
01:12

Problem 25

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n^2 + n^3} $

Clayton Craig
Clayton Craig
Numerade Educator
01:02

Problem 26

Determine whether the series is convergent or divergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {n}{n^4 + 1} $

Clayton Craig
Clayton Craig
Numerade Educator
01:17

Problem 27

Explain why the Integral Test can't be used to determine whether the series is convergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {\cos \pi n}{\sqrt n} $

Clayton Craig
Clayton Craig
Numerade Educator
01:39

Problem 28

Explain why the Integral Test can't be used to determine whether the series is convergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {\cos^2 n}{1 + n^2} $

Clayton Craig
Clayton Craig
Numerade Educator
03:31

Problem 29

Find the values of $ p $ for which the series is convergent.
$ \displaystyle \sum_{n = 2}^{\infty} \frac {{1}}{{n(\ln n)^P}} $

Clayton Craig
Clayton Craig
Numerade Educator
04:40

Problem 30

Find the values of $ p $ for which the series is convergent.
$ \displaystyle \sum_{n = 3}^{\infty} \frac {{1}}{{ n \ln n [\ln (\ln n)]^P}} $

JH
J Hardin
Numerade Educator
04:51

Problem 31

Find the values of $ p $ for which the series is convergent.
$ \displaystyle \sum_{n = 1}^{\infty} n(1 + n^2)^P $

JH
J Hardin
Numerade Educator
09:55

Problem 32

Find the values of $ p $ for which the series is convergent.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {\ln n}{n^P} $

JH
J Hardin
Numerade Educator
01:14

Problem 33

The Riemann zeta-function $ \zeta $ is defined by
$ \zeta(x) = \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n^x} $
and is used in number theory to study the distribution of prime numbers. What is the domain of $ \zeta $ ?

JH
J Hardin
Numerade Educator
02:02

Problem 34

Leonhard Euler was able to calculate the exact sum of the $ p- $ series with $ p = 2: $
$ \zeta (2) = \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n^2} = \frac {\pi^2}{6} $
(See page 720.) Use this fact to find the sum of each series.
(a) $ \displaystyle \sum_{n = 2}^{\infty} \frac {1}{n^2} $
(b) $ \displaystyle \sum_{n = 3}^{\infty} \frac {1}{(n + 1)^2} $
(c) $ \displaystyle \sum_{n = 1}^{\infty} \frac {1}{(2n)^2} $

Clayton Craig
Clayton Craig
Numerade Educator
03:52

Problem 35

Euler also found the sum of the $ p- $ series with $ p = 4: $
$ \zeta (4) = \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n^4} = \frac {\pi^4}{90} $
Use Euler's result to find the sum of the series.
(a) $ \displaystyle \sum_{n = 1}^{\infty} \left( \frac {3}{n} \right)^4 $
(b) $ \displaystyle \sum_{k = 5}^{\infty} \frac {1}{(k - 2)^4} $

JH
J Hardin
Numerade Educator
08:31

Problem 36

(a) Find the partial sum $ s_10 $ of the series $ \sum_{n = 1}^{\infty} 1/n^4. $ Estimate the error in using $ s_10 $ as an approximation to the sum of the series.
(b) Use (3) with $ n = 10 $ to give an improved estimate of the sum.
(c) Compare your estimate in part (b) with the exact value given in Exercise 35.
(d) Find a value of $ n $ so that $ s_n $ is within 0.00001 of the sum.

JH
J Hardin
Numerade Educator
12:31

Problem 37

(a) Use the sum of the first 10 terms to estimate the sum of the series $ \sum_{n = 1}^{\infty} 1/n^2. $ How good is this estimate?
(b) Improve this estimate using (3) with $ n = 10. $
(c) Compare your estimate in part (b) with the exact value given in Exercise 34.
(d) Find a value of $ n $ that will ensure that the error in the approximation $ s \approx s_n $ is less than 0.001.

JH
J Hardin
Numerade Educator
05:11

Problem 38

Find the sum of the series $ \sum_{n = 1}^{\infty} ne^{-2n} $ correct to four decimal places.

JH
J Hardin
Numerade Educator
05:36

Problem 39

Estimate $ \sum_{n = 1}^{\infty} (2n + 1)^{-6} $ correct to five decimal places.

JH
J Hardin
Numerade Educator
04:04

Problem 40

How many terms of the series $ \sum_{n = 2}^{\infty} 1/[n(\ln n)^2] $ would you need to add to find its sum to within 0.01?

JH
J Hardin
Numerade Educator
03:35

Problem 41

Show that if we want to approximate the sum of the series $ \sum_{n = 1}^{\infty} n^{-1.001} $ so that the error is less than 5 in the ninth decimal place, then we need to add more than $ 10^{11,301} $ terms!

JH
J Hardin
Numerade Educator
11:11

Problem 42

(a) Show that the series $ \sum_{n = 1}^{\infty} (\ln n)^2/n^2 $ is convergent.
(b) Find an upper bound for the error in the approximation $ s
\approx s_n. $
(c) What is the smallest value of $ n $ such that this upper bound is less that 0.05?
(d) Find $ s_n $ for this value of $ n. $

JH
J Hardin
Numerade Educator
08:31

Problem 43

(a) Use (4) to show that if $ s_n $ is the $ n $th partial sum of the harmonic series, then
$ s_n \le 1 + \ln n $
(b) The harmonic series diverges, but very slowly. Use part (a) to show that the sum of the first million terms is less than 15 and the sum of the first billion terms is less than 22.

JH
J Hardin
Numerade Educator
13:14

Problem 44

Use the following steps to show that the sequence
$ t_n = 1 + \frac {1}{2} + \frac {1}{3} + \cdot \cdot \cdot + \frac {1}{n} - \ln n $
has a limit. (The value of the limit is denoted by $ \gamma $ and is called Euler's constant.)
(a) Draw a picture like Figure 6 with $ f(x) = 1/x $ and interpret $ t_n $ as an area [or use (5)] to show that $ t_n > 0 $ for all $ n. $
(b) Interpret
$ t_n - t_{n + 1} = \left[ \ln \left(n + 1 \right) - \ln n \right] - \frac {1}{n + 1} $
as a difference of areas to show that $ \left\{ t_n \right\} $ is convergent.

JH
J Hardin
Numerade Educator
03:04

Problem 45

Find all positive values of $ b $ for which the series $ \sum_{n = 1}^{\infty} b^{\ln n} $ converges.

JH
J Hardin
Numerade Educator
03:58

Problem 46

Find all values of $ c $ for which the following series converges.
$ \displaystyle \sum_{n = 1}^{\infty} \left( \frac {c}{n} - \frac {1}{n + 1} \right) $

JH
J Hardin
Numerade Educator

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started