Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

  • Home
  • Textbooks
  • Calculus: Early Transcendentals
  • Infinite Sequences and Series

Calculus: Early Transcendentals

James Stewart

Chapter 11

Infinite Sequences and Series - all with Video Answers

Educators

JH
EI

Section 8

Power Series

00:54

Problem 1

What is a power series?

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:10

Problem 2

(a) What is the radius of convergence of a power series?
How do you find it?
(b) What is the interval of convergence of a power series?
How do you find it?

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:30

Problem 3

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} ( - 1)^n nx^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:13

Problem 4

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {( - 1)^n x^n}{\sqrt[3]{n}} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:16

Problem 5

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {x^n}{2n - 1} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:51

Problem 6

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {( - 1)^n x^n}{n^2} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:12

Problem 7

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 0}^{\infty} \frac {x^n}{n!} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:39

Problem 8

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} n^nx^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
03:10

Problem 9

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {x^n}{n^44^n} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
03:07

Problem 10

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} 2^nn^2x^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
03:18

Problem 11

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {( - 1)^n 4^n}{\sqrt{n}} x^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:43

Problem 12

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {( - 1)^{n-1}}{n5^n} x^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
04:08

Problem 13

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {n}{2^n(n^2 + 1)} x^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
03:14

Problem 14

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {x^{2n}}{n!} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
04:12

Problem 15

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 8}^{\infty} \frac {(x - 2)^n}{n^2 + 1} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
04:51

Problem 16

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {( - 1)^n}{(2n - 1)2^n} (x - 1)^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
05:33

Problem 17

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 2}^{\infty} \frac {(x + 2)^n}{2^n \ln n} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
04:21

Problem 18

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {\sqrt{n}}{8^n} (x + 6)^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:12

Problem 19

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {(x - 2)^n}{n^n} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
10:44

Problem 20

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {(2x - 1)^n}{5^ \sqrt{n}} $

Mutahar Mehkri
Mutahar Mehkri
Numerade Educator
04:26

Problem 21

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {n}{b^n} (x - a)^n, b > 0 $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
05:39

Problem 22

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {b^n}{\ln n} (x - a)^n, b > 0 $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:45

Problem 23

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} n!(2x - 1)^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:15

Problem 24

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {n^2x^n}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot \cdot \cdot (2n)} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
04:45

Problem 25

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {5x - 4)^n}{n^3} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
06:34

Problem 26

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 2}^{\infty} \frac {x^{2n}}{n(\ln n)^2} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:52

Problem 27

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {x^n}{1 \cdot 3 \cdot 5 \cdot \cdot \cdot\cdot \cdot (2n - 1)} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
06:34

Problem 28

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {n!x^n}{1 \cdot 3 \cdot 5 \cdot \cdot \cdot \cdot \cdot (2n - 1)} $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
03:11

Problem 29

If $ \sum_{n = 0}^{\infty} c_n4^n $ is convergent, can we conclude that each of the following series is convergent?

(a) $ \sum_{n = 0}^{\infty} c_n ( - 2)^n $

(b) $ \sum_{n = 0}^{\infty} c_n ( - 4)^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:37

Problem 30

Suppose that $ \sum_{n = 0}^{\infty} c_nx^n $ converges when $ x = - 4 $ and diverges when $ x = 6. $ What can be said about the convergence or divergence of the following series?

(a) $ \sum_{n = 0}^{\infty} c_n $

(b) $ \sum_{n = 0}^{\infty} c_n8^n $

(c) $ \sum_{n = 0}^{\infty} c_n( - 3)^n $

(d) $ \sum_{n = 0}^{\infty} ( - 1)^n c_n 9^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
06:16

Problem 31

If $ k $ is a positive integer, find the radius of convergence of the series

$ \sum_{n = 0}^{\infty} \frac {(n!)^k}{(kn)!} x^n $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
05:47

Problem 32

Let $ p $ and $ q $ be real numbers with $ p < q. $ Find a power series whose interval of convergence is
(a) $ (p, q) $
(b) $ (p, q] $
(c) $ [p, q) $
(d) $ [p, q] $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:19

Problem 33

Is it possible to find a power series whose interval of convergence is $ [0, \infty)? $ Explain.?

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
03:05

Problem 34

Graph the first several partial sums $ s_n (x) $ of the series $ \sum_{n = 0}^{\infty} x^n, $ together with the sum function $ f(x) = 1/(1 - x), $ on a common screen. On what interval do these partial sums appear to be converging to $ f(x)? $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
04:13

Problem 35

The function $ J_1 $ defined by
$ J_1(x) = \sum_{n = 0}^{\infty} \frac {(-1)^n x^{2n + 1}}{n! (n + 1)! 2^{2n + 1}} $
is called the Bessel function of order 1.
(a) Find its domain.
(b) Graph the first several partial sums on a common screen.
(c) If your CAS has built-in Bessel Functions, graph $ J_1 $ on the same screen as the partial sums in part (b) and observe how the partial sums approximate $ J_1. $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:51

Problem 36

The function $ A $ defined by
$ A (x) = 1 + \frac {x^3}{2 \cdot 3} + \frac {x^6}{2 \cdot 3 \cdot 5 \cdot 6} + \frac {x^9}{\2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9} + \cdot \cdot \cdot
is called an Airy function after the English mathematician and astronomer Sir George Airy (1801- 1892).
(a) Find the domain of the Airy function.
(b) Graph the first several partial sums on a common screen.
(c) If your CAS has built-in Airy functions, graph A on the same screen as the partial sums in part (b) and observe how the partial sums approximate A.

Madi Sousa
Madi Sousa
Numerade Educator
02:37

Problem 37

A function $ f $ is defined by
$ f(x) = 1 + 2x + x^2 + 2x^3 + x^4 + \cdot \cdot \cdot $
that is, its coefficients are $ c_{2n} = 1 $ and $ c_{2n + 1} = 2 $ for all $ n \ge 0. $ Find the interval of convergence of the series and find an explicit formula for $ f(x). $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
04:40

Problem 38

If $ f(x) = \sum_{n = 0}^{\infty} c_n x^n, $ where $ c_{n + 4} = c_n $ for all $ n \ge 0, $ find the interval of convergence of the power series and a formula for $ f(x). $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
02:40

Problem 39

Show that if $ \lim_{n \to \infty} \sqrt[n]{\mid c_n \mid} = c, $ where $ c \not= 0, $ then the radius of convergence of the power series $ \sum c_n x^n $ is $ R = 1/c. $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
03:22

Problem 40

Suppose that the power series $ \sum c_n (x - a)^n $ satisfies $ c_n \not= 0 $ for all $ n. $ Show that if $ \lim_{n \to \infty} \mid c_n/c_{n + 1} \mid $ exists, then it is equal to the radius of convergence of the power series.

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:57

Problem 41

Suppose the series $ \sum c_n x^n $ has radius of convergence 2 and the series $ \sum d_n x^n $ has radius of convergence 3. What is the radius of convergence of the series $ \sum (c_n + d_n) x^n? $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator
01:49

Problem 42

Suppose that the radius of convergence of the power series $ \sum c_n x^n $ is $ R. $ What is the radius of convergence of the power series $ \sum c_n x^{2n} ? $

Gabriel Rhodes
Gabriel Rhodes
Numerade Educator

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started