💬 👋 We’re always here. Join our Discord to connect with other students 24/7, any time, night or day.Join Here!
Section 1
Line Integrals of Scalar Functions
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=t \mathbf{i}+(1-t) \mathbf{j}, \quad 0 \leq t \leq 1$$
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=\mathbf{i}+\mathbf{j}+t \mathbf{k}, \quad-1 \leq t \leq 1$$
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=(2 \cos t) \mathbf{1}+(2 \sin t) \mathbf{J}, \quad 0 \leq t \leq 2 \pi$$
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=t \mathbf{i}, \quad-1 \leq t \leq 1$$
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq 2$$
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=t \mathbf{j}+(2-2 t) \mathbf{k}, \quad 0 \leq t \leq 1$$
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=\left(t^{2}-1\right) \mathbf{j}+2 t \mathbf{k}, \quad-1 \leq t \leq 1$$
Match the vector equations with the graphs (a)-(h) given here. (GRAPH CANT COPY)$$\mathbf{r}(t)=(2 \cos t) \mathbf{i}+(2 \sin t) \mathbf{k}, \quad 0 \leq t \leq \pi$$
Evaluate $\int_{C}(x+y) d s,$ where $C$ is the straight-line segment $x=t, y=(1-t), z=0,$ from (0,1,0) to (1,0,0).
Evaluate $\int_{C}(x-y+z-2) d s,$ where $C$ is the straight-line segment $x=t, y=(1-t), z=1,$ from (0,1,1) to (1,0,1).
Evaluate $\int_{C}(x y+y+z) d s$ along the curve $\mathbf{r}(t)=2 t \mathbf{i}+$ $t \mathbf{j}+(2-2 t) \mathbf{k}, 0 \leq t \leq 1$.
Evaluate $\int_{C} \sqrt{x^{2}+y^{2}} d s$ along the curve $\mathbf{r}(t)=(4 \cos t) \mathbf{i}+$$(4 \sin t) \mathbf{j}+3 t \mathbf{k},-2 \pi \leq t \leq 2 \pi$.
Find the line integral of $f(x, y, z)=x+y+z$ over the straightline segment from (1,2,3) to (0,-1,1).
Find the line integral of $f(x, y, z)=\sqrt{3} /\left(x^{2}+y^{2}+z^{2}\right)$ over the curve $\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+t \mathbf{k}, 1 \leq t \leq \infty$.
Integrate $f(x, y, z)=x+\sqrt{y}-z^{2}$ over the path $C_{1}$ followed by $C_{2}$ from (0,0,0) to (1,1,1) (see accompanying figure) given by$$\begin{array}{ll}C_{1}: & \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 1 \\C_{2}: & \mathbf{r}(t)=\mathbf{i}+\mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq 1\end{array}$$(GRAPH CANT COPY)The paths of integration for Exercises 15 and 16
Integrate $f(x, y, z)=x+\sqrt{y}-z^{2}$ over the path $C_{1}$ followed by $C_{2}$ followed by $C_{3}$ from (0,0,0) to (1,1,1) (see accompanying figure) given by$$C_{1}: \quad \mathbf{r}(t)=t \mathbf{k}, \quad 0 \leq t \leq 1$$$C_{2}: \quad \mathbf{r}(t)=t \mathbf{j}+\mathbf{k}, \quad 0 \leq t \leq 1$$$C_{3}: \quad \mathbf{r}(t)=t \mathbf{i}+\mathbf{j}+\mathbf{k}, \quad 0 \leq t \leq 1$$(GRAPH CANT COPY)
Integrate $f(x, y, z)=(x+y+z) /\left(x^{2}+y^{2}+z^{2}\right)$ over the path $\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+t \mathbf{k}, 0<a \leq t \leq b$.
Integrate $f(x, y, z)=-\sqrt{x^{2}+z^{2}}$ over the circle$$\mathbf{r}(t)=(a \cos t) \mathbf{j}+(a \sin t) \mathbf{k}, \quad 0 \leq t \leq 2 \pi$$.
Evaluate $\int_{C} x d s,$ where $C$ isa. the straight-line segment $x=t, y=t / 2,$ from (0,0) to (4,2).b. the parabolic curve $x=t, y=t^{2},$ from (0,0) to (2,4).
Evaluate $\int_{C} \sqrt{x+2 y} d s,$ where $C$ isa. the straight-line segment $x=t, y=4 t,$ from (0,0) to (1,4).b. $C_{1} \cup C_{2} ; C_{1}$ is the line segment from (0,0) to $(1,0),$ and $C_{2}$ is the line segment from (1,0) to (1,2).
Find the line integral of $f(x, y)=y e^{x^{2}}$ along the curve $\mathbf{r}(t)=4 t \mathbf{i}-3 t \mathbf{j},-1 \leq t \leq 2$.
Find the line integral of $f(x, y)=x-y+3$ along the curve $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}, 0 \leq t \leq 2 \pi$.
Evaluate $\int_{C} \frac{x^{2}}{y^{4 / 3}} d s,$ where $C$ is the curve $x=t^{2}, y=t^{3},$ for $1 \leq t \leq 2$.
Find the line integral of $f(x, y)=\sqrt{y} / x$ along the curve $\mathbf{r}(t)=t^{3} \mathbf{i}+t^{4} \mathbf{j}, 1 / 2 \leq t \leq 1$.
Evaluate $\int_{C}(x+\sqrt{y}) d s,$ where $C$ is given in the accompanying figure. (FIGURE CAN'T COPY)
Evaluate $\int_{C} \frac{1}{x^{2}+y^{2}+1} d s,$ where $C$ is given in the accompanying figure. (FIGURE CAN'T COPY)
Integrate $f$ over the given curve.$f(x, y)=x^{3} / y, \quad C: \quad y=x^{2} / 2, \quad 0 \leq x \leq 2$
Integrate $f$ over the given curve.$f(x, y)=\left(x+y^{2}\right) / \sqrt{1+x^{2}}, \quad C: \quad y=x^{2} / 2$ from $(1,1 / 2)$ to (0,0)
Integrate $f$ over the given curve.$f(x, y)=x+y, \quad C: \quad x^{2}+y^{2}=4$ in the first quadrant from (2,0) to (0,2)
Integrate $f$ over the given curve.$f(x, y)=x^{2}-y, \quad C: \quad x^{2}+y^{2}=4$ in the first quadrant from (0,2) to $(\sqrt{2}, \sqrt{2})$
Find the area of one side of the "winding wall" standing perpendicularly on the curve $y=x^{2}, 0 \leq x \leq 2,$ and beneath the curve on the surface $f(x, y)=x+\sqrt{y}$.
Find the area of one side of the "wall" standing perpendicularly on the curve $2 x+3 y=6,0 \leq x \leq 6,$ and beneath the curve on the surface $f(x, y)=4+3 x+2 y$.
Find the mass of a wire that lies along the curve $\mathbf{r}(t)=\left(t^{2}-1\right) \mathbf{j}+2 t \mathbf{k}, 0 \leq t \leq 1,$ if the density is $\delta=(3 / 2) t$.
A wire of density $\delta(x, y, z)=15 \sqrt{y+2}$ lies along the curve $\mathbf{r}(t)=\left(t^{2}-1\right) \mathbf{j}+$ $2 t \mathbf{k},-1 \leq t \leq 1 .$ Find its center of mass. Then sketch the curve and center of mass together.
Find the mass of a thin wire lying along the curve $\mathbf{r}(t)=\sqrt{2} t \mathbf{i}+\sqrt{2} t \mathbf{j}+\left(4-t^{2}\right) \mathbf{k}$$0 \leq t \leq 1,$ if the density is (a) $\delta=3 t$ and (b) $\delta=1$.
Find the center of mass of a thin wire lying along the curve $\mathbf{r}(t)=t \mathbf{i}+2 t \mathbf{j}+$ $(2 / 3) t^{3 / 2} \mathbf{k}, 0 \leq t \leq 2,$ if the density is $\delta=3 \sqrt{5+t}$.
A circular wire hoop of constant density $\delta$ lies along the circle $x^{2}+y^{2}=a^{2}$ in the $x y$ -plane. Find the hoop's moment of inertia about the z-axis.
A slender rod of constant density lies along the line segment $\mathbf{r}(t)=t \mathbf{j}+(2-2 t) \mathbf{k}, 0 \leq t \leq 1,$ in the yz-plane. Find the moments of inertia of the rod about the three coordinate axes.
A spring of constant density $\delta$ lies along the helix$$\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq 2 \pi$$a. Find $I_{z}$b. Suppose that you have another spring of constant density $\delta$ that is twice as long as the spring in part (a) and lies along the helix for $0 \leq t \leq 4 \pi .$ Do you expect $I_{2}$ for the longer spring to be the same as that for the shorter one, or should it be different? Check your prediction by calculating $I_{z}$ for the longer spring.
A wire of constant density $\delta=1$ lies along the curve$\mathbf{r}(t)=(t \cos t) \mathbf{i}+(t \sin t) \mathbf{j}+(2 \sqrt{2} / 3) t^{3 / 2} \mathbf{k}, \quad 0 \leq t \leq 1$Find $\bar{z}$ and $I_{z}$.
Find $I_{x}$ for the arch in Example 4.
Find the center of mass and the moments of inertia about the coordinate axes of a thin wire lying along the curve$$\mathbf{r}(t)=t \mathbf{i}+\frac{2 \sqrt{2}}{3} t^{3 / 2} \mathbf{j}+\frac{t^{2}}{2} \mathbf{k}, \quad 0 \leq t \leq 2$$if the density is $\delta=1 /(t+1)$.
Use a CAS to perform the following steps to evaluate the line integrals.a. Find $d s=|\mathbf{v}(t)|$ d $t$ for the path $\mathbf{r}(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}$.b. Express the integrand $f(g(t), h(t), k(t))|\mathbf{v}(t)|$ as a function of the parameter $t$.c. Evaluate $\int_{C} f d s$ using Equation (2) in the text.$f(x, y, z)=\sqrt{1+30 x^{2}+10 y} ; \quad \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+3 t^{2} \mathbf{k}$$0 \leq t \leq 2$
Use a CAS to perform the following steps to evaluate the line integrals.a. Find $d s=|\mathbf{v}(t)|$ d $t$ for the path $\mathbf{r}(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}$.b. Express the integrand $f(g(t), h(t), k(t))|\mathbf{v}(t)|$ as a function of the parameter $t$.c. Evaluate $\int_{C} f d s$ using Equation (2) in the text.$f(x, y, z)=\sqrt{1+x^{3}+5 y^{3}} ; \quad \mathbf{r}(t)=t \mathbf{i}+\frac{1}{3} t^{2} \mathbf{j}+\sqrt{t} \mathbf{k}$$0 \leq t \leq 2$
Use a CAS to perform the following steps to evaluate the line integrals.a. Find $d s=|\mathbf{v}(t)|$ d $t$ for the path $\mathbf{r}(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}$.b. Express the integrand $f(g(t), h(t), k(t))|\mathbf{v}(t)|$ as a function of the parameter $t$.c. Evaluate $\int_{C} f d s$ using Equation (2) in the text.$f(x, y, z)=x \sqrt{y}-3 z^{2} ; \quad \mathbf{r}(t)=(\cos 2 t) \mathbf{i}+(\sin 2 t) \mathbf{j}+5 t \mathbf{k}$$0 \leq t \leq 2 \pi$
Use a CAS to perform the following steps to evaluate the line integrals.a. Find $d s=|\mathbf{v}(t)|$ d $t$ for the path $\mathbf{r}(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}$.b. Express the integrand $f(g(t), h(t), k(t))|\mathbf{v}(t)|$ as a function of the parameter $t$.c. Evaluate $\int_{C} f d s$ using Equation (2) in the text.$f(x, y, z)=\left(1+\frac{9}{4} z^{1 / 3}\right)^{1 / 4} ; \quad \mathbf{r}(t)=(\cos 2 t) \mathbf{i}+(\sin 2 t) \mathbf{j}+$$t^{5 / 2} \mathbf{k}, \quad 0 \leq t \leq 2 \pi$