Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

  • Home
  • Textbooks
  • Calculus: Early Transcendentals
  • Integrals

Calculus: Early Transcendentals

James Stewart

Chapter 5

Integrals - all with Video Answers

Educators

+ 8 more educators

Section 5

The Substitution Rule

00:41

Problem 1

Evaluate the integral by making the given substitution.

$ \displaystyle \int \cos 2x \, dx $, $ u = 2x $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:34

Problem 2

Evaluate the integral by making the given substitution.

$ \displaystyle \int xe^{-x^2}\, dx $, $ u = -x^2 $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:53

Problem 3

Evaluate the integral by making the given substitution.

$ \displaystyle \int x^2 \sqrt{x^3 + 1} \, dx $, $ u = x^3 + 1 $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:32

Problem 4

Evaluate the integral by making the given substitution.

$ \displaystyle \int \sin^2 \theta \cos \theta \, d\theta $, $ u = \sin \theta $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:40

Problem 5

Evaluate the integral by making the given substitution.

$ \displaystyle \int \frac{x^3}{x^4 - 5} \, dx $, $ u = x^4 - 5 $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:44

Problem 6

Evaluate the integral by making the given substitution.

$ \displaystyle \int \sqrt{2t + 1} \, dt $, $ u = 2t + 1 $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:42

Problem 7

Evaluate the indefinite integral.

$ \displaystyle \int x \sqrt{1 - x^2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:43

Problem 8

Evaluate the indefinite integral.

$ \displaystyle \int x^2 e^{x^3} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:42

Problem 9

Evaluate the indefinite integral.

$ \displaystyle \int (1 - 2x)^9 \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:50

Problem 10

Evaluate the indefinite integral.

$ \displaystyle \int \sin t \sqrt{1 + \cos t} \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:43

Problem 11

Evaluate the indefinite integral.

$ \displaystyle \int \cos (\pi t/2) \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:35

Problem 12

Evaluate the indefinite integral.

$ \displaystyle \int \sec^2 2\theta \, d\theta $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
02:26

Problem 13

Evaluate the indefinite integral.

$ \displaystyle \int \frac{dx}{5 - 3x} $

Madi Sousa
Madi Sousa
Numerade Educator
00:53

Problem 14

Evaluate the indefinite integral.

$ \displaystyle \int y^2 (4 - y^3)^{2/3} \, dy $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:46

Problem 15

Evaluate the indefinite integral.

$ \displaystyle \int \cos^3 \theta \sin \theta \, d\theta $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:33

Problem 16

Evaluate the indefinite integral.

$ \displaystyle \int e^{-5r} \, dr $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:29

Problem 17

Evaluate the indefinite integral.

$ \displaystyle \int \frac{e^u}{(1 - e^u)^2} \, du $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:35

Problem 18

Evaluate the indefinite integral.

$ \displaystyle \int \frac{\sin \sqrt{x}}{\sqrt{x}} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:41

Problem 19

Evaluate the indefinite integral.

$ \displaystyle \int \frac{a + bx^2}{\sqrt{3ax + bx^3}} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:30

Problem 20

Evaluate the indefinite integral.

$ \displaystyle \int \frac{z^2}{z^3 + 1} \, dz $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:33

Problem 21

Evaluate the indefinite integral.

$ \displaystyle \int \frac{(\ln x)^2}{x} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:27

Problem 22

Evaluate the indefinite integral.

$ \displaystyle \int \sin x \sin(\cos x) \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:30

Problem 23

Evaluate the indefinite integral.

$ \displaystyle \int \sec^2 \theta \tan^3 \theta \, d\theta $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:43

Problem 24

Evaluate the indefinite integral.

$ \displaystyle \int x \sqrt{x + 2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:32

Problem 25

Evaluate the indefinite integral.

$ \displaystyle \int e^x \sqrt{1 + e^x} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:26

Problem 26

Evaluate the indefinite integral.

$ \displaystyle \int \frac{dx}{ax + b} $ $ (a \neq 0) $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:42

Problem 27

Evaluate the indefinite integral.

$ \displaystyle \int (x^2 + 1)(x^3 + 3x)^4 \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:28

Problem 28

Evaluate the indefinite integral.

$ \displaystyle \int e^{\cos t} \sin t \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:35

Problem 29

Evaluate the indefinite integral.

$ \displaystyle \int 5^t \sin(5^t) \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:32

Problem 30

Evaluate the indefinite integral.

$ \displaystyle \int \frac{\sec^2 x}{\tan^2 x} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:35

Problem 31

Evaluate the indefinite integral.

$ \displaystyle \int \frac{(\arctan x)^2}{x^2 + 1} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:35

Problem 32

Evaluate the indefinite integral.

$ \displaystyle \int \frac{x}{x^2 + 4} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:35

Problem 33

Evaluate the indefinite integral.

$ \displaystyle \int \cos (1 + 5t) \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:43

Problem 34

Evaluate the indefinite integral.

$ \displaystyle \int \frac{\cos (\pi/x)}{x^2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:48

Problem 35

Evaluate the indefinite integral.

$ \displaystyle \int \sqrt{\cot x} \csc^2 x \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:41

Problem 36

Evaluate the indefinite integral.

$ \displaystyle \int \frac{2^t}{2^t + 3} \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:41

Problem 37

Evaluate the indefinite integral.

$ \displaystyle \int \sinh^2 x \cosh x \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:38

Problem 38

Evaluate the indefinite integral.

$ \displaystyle \int \frac{dt}{\cos^2 t \sqrt{1 + \tan t}} $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:38

Problem 39

Evaluate the indefinite integral.

$ \displaystyle \int \frac{\sin 2x}{1 + \cos^2 x} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:43

Problem 40

Evaluate the indefinite integral.

$ \displaystyle \int \frac{\sin x}{1 + \cos^2 x} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:51

Problem 41

Evaluate the indefinite integral.

$ \displaystyle \int \cot x \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:40

Problem 42

Evaluate the indefinite integral.

$ \displaystyle \int \frac{\cos (\ln t)}{t} \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:40

Problem 43

Evaluate the indefinite integral.

$ \displaystyle \int \frac{dx}{\sqrt{1 - x^2} \sin^{-1} x} $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:55

Problem 44

Evaluate the indefinite integral.

$ \displaystyle \int \frac{x}{1 + x^4} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:56

Problem 45

Evaluate the indefinite integral.

$ \displaystyle \int \frac{1 + x}{1 + x^2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:20

Problem 46

Evaluate the indefinite integral.

$ \displaystyle \int x^2 \sqrt{2 + x} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:09

Problem 47

Evaluate the indefinite integral.

$ \displaystyle \int x(2x + 5)^8 \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:04

Problem 48

Evaluate the indefinite integral.

$ \displaystyle \int x^3 \sqrt{x^2 + 1} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:16

Problem 49

Evaluate the indefinite integral. Illustrate and check that your answer is reasonable by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int x(x^2 - 1)^3 \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:29

Problem 50

Evaluate the indefinite integral. Illustrate and check that your answer is reasonable by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int \tan^2 \theta \sec^2 \theta \, d\theta $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:16

Problem 51

Evaluate the indefinite integral. Illustrate and check that your answer is reasonable by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int e^{\cos x} \sin x \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:59

Problem 52

Evaluate the indefinite integral. Illustrate and check that your answer is reasonable by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int \sin x \cos^4 x \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:01

Problem 53

Evaluate the definite integral.

$ \displaystyle \int^1_0 \cos(\pi t/2) \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:02

Problem 54

Evaluate the definite integral.

$ \displaystyle \int^1_0 (3t - 1)^{50} \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:17

Problem 55

Evaluate the definite integral.

$ \displaystyle \int^1_0 \sqrt[3]{1 + 7x} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:03

Problem 56

Evaluate the definite integral.

$ \displaystyle \int^3_0 \frac{dx}{5x + 1} $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:01

Problem 57

Evaluate the definite integral.

$ \displaystyle \int^{\pi/6}_0 \frac{\sin t}{\cos^ 2 t} \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:04

Problem 58

Evaluate the definite integral.

$ \displaystyle \int^{2\pi/3}_{\pi/3} \csc^2 \biggl( \frac{1}{2}t \biggr) \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:54

Problem 59

Evaluate the definite integral.

$ \displaystyle \int^2_1 \frac{e^{1/x}}{x^2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:55

Problem 60

Evaluate the definite integral.

$ \displaystyle \int^1_0 xe^{-x^2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:50

Problem 61

Evaluate the definite integral.

$ \displaystyle \int^{\pi/4}_{-\pi/4} (x^3 + x^4 \tan x) \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:42

Problem 62

Evaluate the definite integral.

$ \displaystyle \int^{\pi/2}_{0} \cos x \sin(\sin x) \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:01

Problem 63

Evaluate the definite integral.

$ \displaystyle \int^{13}_0 \frac{dx}{\sqrt[3]{(1 + 2x)^2}} $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:12

Problem 64

Evaluate the definite integral.

$ \displaystyle \int^a_0 x\sqrt{a^2 - x^2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:12

Problem 65

Evaluate the definite integral.

$ \displaystyle \int^a_0 x\sqrt{x^2 + a^2} \, dx $ $ (a > 0) $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:48

Problem 66

Evaluate the definite integral.

$ \displaystyle \int^{\pi/3}_{-\pi/3} x^4 \sin x \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:27

Problem 67

Evaluate the definite integral.

$ \displaystyle \int^2_1 x\sqrt{x - 1} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:46

Problem 68

Evaluate the definite integral.

$ \displaystyle \int^4_0 \frac{x}{\sqrt{1 + 2x}} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:58

Problem 69

Evaluate the definite integral.

$ \displaystyle \int^{e^4}_{e} \frac{dx}{x \sqrt{\ln x}} $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:12

Problem 70

Evaluate the definite integral.

$ \displaystyle \int^2_0 (x - 1)e^{(x - 1)^2} \, dx $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:57

Problem 71

Evaluate the definite integral.

$ \displaystyle \int^1_0 \frac{e^z + 1}{e^z + z} \, dz $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:22

Problem 72

Evaluate the definite integral.

$ \displaystyle \int^{T/2}_0 \sin (2\pi t/T - \alpha) \, dt $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:06

Problem 73

Evaluate the definite integral.

$ \displaystyle \int^1_0 \frac{dx}{(1 + \sqrt{x})^4} $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:08

Problem 74

Verify that $ f(x) = \sin \sqrt[3]{x} $ is an odd function and use that fact to show that
$$ 0 \le \int^3_{-2} \sin \sqrt[3]{x} \, dx \le 1 $$

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:19

Problem 75

Use a graph to give a rough estimate of the area of the region that lies under the given curve. Then find the exact area.

$ y = \sqrt{2x + 1} $, $ 0 \le x \le 1 $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:51

Problem 76

Use a graph to give a rough estimate of the area of the region that lies under the given curve. Then find the exact area.

$ y = 2 \sin x - \sin 2x $, $ 0 \le x \le \pi $

Amrita Bhasin
Amrita Bhasin
Numerade Educator
03:43

Problem 77

Evaluate $ \displaystyle \int^2_{-2} (x + 3) \sqrt{4 - x^2} \,dx $ by writing it as a sum of two integrals and interpreting one of those integrals in terms of an area.

Mary Wakumoto
Mary Wakumoto
Numerade Educator
01:13

Problem 78

Evaluate $ \displaystyle \int^1_0 x \sqrt{1 - x^4} \,dx $ by making a substitution and interpreting the resulting integral in terms of an area.

Amrita Bhasin
Amrita Bhasin
Numerade Educator
05:30

Problem 79

Which of the following areas are equal? Why?

Mutahar Mehkri
Mutahar Mehkri
Numerade Educator
View

Problem 80

A model for the basal metabolism rate, in kcal/h, of a young man is $ R(t) = 85 - 0.18 \cos(\pi t/12) $, where $ t $ is the time in hours measured from 5:00 AM. What is the total basal metabolism of this man, $ \displaystyle \int^{24}_0 R(t) \, dt $, over a 24-hour time period?

Darshan Maheshwari
Darshan Maheshwari
Numerade Educator
04:12

Problem 81

An oil storage tank ruptures at time $ t = 0 $ and oil leaks from the tank at a rate of $ r(t) = 100e^{-0.01t} $ liters per minute. How much oil leaks out during the first hour?

Suman Saurav Thakur
Suman Saurav Thakur
Numerade Educator
View

Problem 82

A bacteria population starts with 400 bacteria and grows at a rate of $ r(t) = (450.268)e^{1.12567t} $ bacteria per hour. How many bacteria will there be after three hours?

Ma. Theresa  Alin
Ma. Theresa Alin
Numerade Educator
View

Problem 83

Breathing is cyclic and a full respiratory cycle from the beginning of inhalation to the end of exhalation takes about 5 s. The maximum rate of air flow into the lungs is about 0.5 L/s. This explains, in part, why the function $ f(t) = \frac{1}{2} \sin (2\pi t/5) $ has often been used to model the rate of air flow into the lungs. Use this model to find the volume of inhaled air in the lungs at time $ t $.

Patrick Delos Reyes
Patrick Delos Reyes
Numerade Educator
06:26

Problem 84

The rate of growth of a fish population was modeled by the equation
$$ G(t) = \frac{60,000e^{-0.6t}}{(1 + 5e^{-0.6t})^2} $$
where $ t $ is measured in years and $ G $ in kilograms per year. If the biomass was 25,000 kg in the year 2000, what is the predicted biomass for the year 2020?

Bobby Barnes
Bobby Barnes
University of North Texas
14:07

Problem 85

Dialysis treatment removes urea and other waste products from a patient's blood by diverting some of the bloodflow externally through a machine called a dialyzer. The rate at which the urea is removed from the blood (in mg/min) is often well described by the equation
$$ u(t) = \frac{r}{V} C_0 e^{-rt/V} $$
where $ r $ is the rate of flow of blood through the dialyzer (in mL/min), $ V $ is the volume of the patient's blood (in mL), and $ C_0 $ is the amount of urea in the blood (in mg) at time $ t = 0 $. Evaluate the integral $ \displaystyle \int^{30}_0 u(t) \, dt $ and interpret it.

Michael Cooper
Michael Cooper
Numerade Educator
05:21

Problem 86

Alabama Instruments Company has set up a production line to manufacture a new calculator. The rate of production of these calculators after $ t $ weeks is
$$ \frac{dx}{dt} = 5000 \biggl( 1 - \frac{100}{(t + 10)^2} \biggr) \text{calculators/week} $$

(Notice that production approaches 5000 per week as time goes on, but the initial production is lower because of the workers' unfamiliarity with the new techniques.) Find the number of calculators produced from the beginning of the third week to the end of the fourth week.

Linda Hand
Linda Hand
Numerade Educator
00:37

Problem 87

If $ f $ is continuous and $ \displaystyle \int^4_0 f(x) \, dx = 10 $, find $ \displaystyle \int^2_0 f(2x) \, dx $.

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:00

Problem 88

If $ f $ is continuous and $ \displaystyle \int^9_0 f(x) \, dx = 4 $, find $ \displaystyle \int^3_0 xf(x^2) \, dx $.

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:49

Problem 89

If $ f $ is continuous on $ \mathbb{R} $, prove that
$$ \int^b_a f(-x) \, dx = \int^{-a}_{-b} f(x) \, dx $$
For the case where $ f(x) \ge 0 $ and $ 0 < a < b $, draw a diagram to interpret this equation geometrically as an equality of areas.

Amrita Bhasin
Amrita Bhasin
Numerade Educator
00:42

Problem 90

If $ f $ is continuous on $ \mathbb{R} $, prove that
$$ \int^b_a f(x + c) \, dx = \int^{b + c}_{a + c} f(x) \, dx $$
For the case where $ f(x) \ge 0 $, draw a diagram to interpret this equation geometrically as an equality of areas.

Amrita Bhasin
Amrita Bhasin
Numerade Educator
02:50

Problem 91

If $ a $ and $ b $ are positive numbers, show that
$$ \int^1_0 x^a(1 - x)^b \,dx = \int^1_0 x^b(1 - x)^a \,dx $$

Dakarai Holcomb
Dakarai Holcomb
Numerade Educator
01:09

Problem 92

If $ f $ is continuous on $ [0, \pi] $, use the substitution $ u = \pi - x $ to show that
$$ \int^{\pi}_0 x f(\sin x) \,dx = \frac{\pi}{2} \int^{\pi}_0 f(\sin x) \,dx $$

Amrita Bhasin
Amrita Bhasin
Numerade Educator
01:50

Problem 93

Use Exercise 92 to evaluate the integral
$$ \int^{\pi}_0 \frac{x \sin x}{1 + \cos^2 x} \, dx $$

Amrita Bhasin
Amrita Bhasin
Numerade Educator
06:28

Problem 94

(a) If $ f $ is continuous, prove that
$$ \int^{\pi/2}_0 f(\cos x) \,dx = \int^{\pi/2}_0 f(\sin x) \,dx $$

(b) Use part (a) to evaluate $ \displaystyle \int^{\pi/2}_0 \cos^2 x \,dx $ and $ \displaystyle \int^{\pi/2}_0 \sin^2 x \,dx $

Frank Lin
Frank Lin
Numerade Educator

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started