Suppose that magnetic field measurements are made along a wire shaped as a curve $C$ and the results are tabulated as follows:
$$ \begin{array}{|c|c|c|} \hline k & \text { Point } \mathbf{x}_{k}= & \mathbf{B}\left(x_{k}, y_{k}, z_{k}\right)= \\
& \left(x_{k}, y_{k}, z_{k}\right) & M \mathbf{i}+N \mathbf{j}+P \mathbf{k} \\ \hline 0 & (-1,-2,-1) & \mathbf{k} \\ 1 & (0,1,-1) & \mathbf{j}+2 \mathbf{k} \\ 2 & (0,2,0) & \mathbf{i}+\mathbf{j}+2 \mathbf{k} \\ 3 & (1,2,1) & 2 \mathbf{i}+\mathbf{j}+2 \mathbf{k} \\ 4 & (1,2,2) & 2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k} \\ 5 & (1,1,2) & 2 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k} \\ 6 & (1,1,1) & 3 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k} \\ 7 & (1,0,0) & 4 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k} \\ 8 & (0,0,0) & 4 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k} \end{array} $$ By writing $\int_{C} \mathbf{B} \cdot d \mathbf{s}$ as $\int_{C} M d x+N d y+P d z,$ estimate the work done by $\mathbf{B}$ along $C$ using
(a) a trapezoidal rule approximation;
(b) a trapezoidal rule approximation using only the points $\mathbf{x}_{0}, \mathbf{x}_{2}, \mathbf{x}_{4}, \mathbf{x}_{6}, \mathbf{x}_{8}$