๐ฌ ๐ Weโre always here. Join our Discord to connect with other students 24/7, any time, night or day.Join Here!
Section 11
Integration by Use of Tables
Make the given changes in the indicated examples of this section, and then state which formula from Appendix D would be used to complete the integration.In Example $1,$ change the denominator to $(2+3 x)^{2}$.
Make the given changes in the indicated examples of this section, and then state which formula from Appendix D would be used to complete the integration.In Example $2,$ in the numerator, change $-$ to $+$.
Identify $u, d u,$ and the formula from Appendix $D$ that would be used to complete the integration. Do not integrate.$$\int \frac{4 d y}{3 y \sqrt{1+2 y}}$$
Identify $u, d u,$ and the formula from Appendix $D$ that would be used to complete the integration. Do not integrate.$$\int \frac{x d x}{\sqrt{x^{4}-16}}$$
Identify $u, d u,$ and the formula from Appendix $D$ that would be used to complete the integration. Do not integrate.$$\int \frac{x d x}{\left(4-x^{4}\right)^{3 / 2}}$$
Identify $u, d u,$ and the formula from Appendix $D$ that would be used to complete the integration. Do not integrate.$$\int x^{5} \ln x^{3} d x$$
Identify $u, d u,$ and the formula from Appendix $D$ that would be used to complete the integration. Do not integrate.$$\int x \cos ^{2}\left(x^{2}\right) d x$$
Identify $u, d u,$ and the formula from Appendix $D$ that would be used to complete the integration. Do not integrate.$$\int \frac{d s}{s\left(s^{4}-1\right)^{3 / 2}}$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{3 x d x}{2+5 x}$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{4 x d x}{1+2 x+x^{2}}$$
Integrate each function by using the table in Appendix $D$.$$\int_{2}^{7} 4 x \sqrt{2+x} d x$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{d x}{x^{2}-4}$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{8 d y}{\left(y^{2}+4\right)^{3 / 2}}$$
Integrate each function by using the table in Appendix $D$.$$\int_{0}^{\pi / 3} 3 \sin ^{3} x d x$$
Integrate each function by using the table in Appendix $D$.$$\int \sin 2 x \sin 3 x d x$$
Integrate each function by using the table in Appendix $D$.$$\int 6 \sin ^{-1} 3 x d x$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{\sqrt{4 x^{2}-9}}{x} d x$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{\left(9 x^{2}+16\right)^{3 / 2}}{x} d x$$
Integrate each function by using the table in Appendix $D$.$$\int \cos ^{5} 4 x d x$$
Integrate each function by using the table in Appendix $D$.$$\int \tan ^{-1} 2 x d x$$
Integrate each function by using the table in Appendix $D$.$$\int 6 r \tan ^{-1} r^{2} d r$$
Integrate each function by using the table in Appendix $D$.$$\int 5 x e^{4 x} d x$$
Integrate each function by using the table in Appendix $D$.$$\int_{1}^{2}\left(4-x^{2}\right)^{3 / 2} d x$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{3 d x}{9-16 x^{2}}$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{d x}{2 x \sqrt{x^{2}+\frac{1}{4}}}$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{\sqrt{9+x^{2}}}{x} d x$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{8 d x}{x \sqrt{1-4 x^{2}}}$$
Integrate each function by using the table in Appendix $D$.$$\int \sqrt{5-16 x^{2}} d x$$
Integrate each function by using the table in Appendix $D$.$$\int_{0}^{\pi / 12} \sin \theta \cos 5 \theta d \theta$$
Integrate each function by using the table in Appendix $D$.$$\int_{0}^{2} x^{2} e^{3 x} d x$$
Integrate each function by using the table in Appendix $D$.$$\int 6 x^{5} \cos x^{3} d x$$
Integrate each function by using the table in Appendix $D$.$$\int 15 \sin ^{3} t \cos ^{2} t d t$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{2 x d x}{\left(1-x^{4}\right)^{3 / 2}}$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{d x}{x-4 x^{2}}$$
Integrate each function by using the table in Appendix $D$.$$\int_{1}^{3} \frac{\sqrt{3+5 x^{2}} d x}{x}$$
Integrate each function by using the table in Appendix $D$.$$\int_{1 / 2}^{1} \frac{\sqrt{9-4 x^{2}}}{x} d x$$
Integrate each function by using the table in Appendix $D$.$$\int x^{3} \ln x^{2} d x$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{1.2 u d u}{u^{2} \sqrt{u^{4}-9}}$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{9 x^{2} d x}{\left(x^{6}-1\right)^{3 / 2}}$$
Integrate each function by using the table in Appendix $D$.$$\int x^{7} \sqrt{x^{4}+4} d x$$
Integrate each function by using the table in Appendix $D$.$$\int t^{2}\left(t^{6}+1\right)^{3 / 2} d t$$
Integrate each function by using the table in Appendix $D$.$$\int \frac{\sqrt{3+4 x^{2}} d x}{x}$$
Integrate each function by using the table in Appendix $D$.$$\int \sin ^{3} 4 x \cos ^{3} 4 x d x$$
Integrate each function by using the table in Appendix $D$.$$\int 6 \cot ^{4} 2 d x$$
Integrate each function by using the table in Appendix $D$.A good representation of the cables between towers of the $2280-\mathrm{m}$ section of the Golden Gate Bridge is $y=0.000370 x^{2}$ for $-1140 \leq x \leq 1140,$ where $x$ and $y$ are in meters. Find the length of the cables (see Exercise 35 of Section 26.6 ).
Integrate each function by using the table in Appendix $D$.The design of a rotor can be represented as the volume generated by rotating the area bounded by $y=3.00 \ln x, x=3.00,$ and the $x$ -axis. Find its radius of gyration about the $y$ -axis.
Integrate each function by using the table in Appendix $D$.Find the area of an ellipse with a major axis $2 a$ and a minor axis $2 b$
Integrate each function by using the table in Appendix $D$.The voltage across a $5.0-\mu$ F capacitor in an electric circuit is zero. What is the voltage after $5.00 \mu$ s if a current $i$ (in $m A$ ) as a function of the time $t$ (in s) given by $i=\tan ^{-1} 2 t$ charges the capacitor?
Integrate each function by using the table in Appendix $D$.Find the force (in $1 \mathrm{b}$ ) on the region bounded by $x=1 / \sqrt{1+y}$ $y=0, y=3,$ and the $y$ -axis, if the surface of the water is at the upper edge of the area.
Integrate each function by using the table in Appendix $D$.If $6.00 \mathrm{g}$ of a chemical are placed in water, the time $t$ (in min) it takes to dissolve half of the chemical is given by $t=560 \int_{3}^{6} \frac{d x}{x(x+4)}$ where $x$ is the amount of undissolved chemical at any time. Evaluate $t$.
Integrate each function by using the table in Appendix $D$.The dome of a sports arena is the surface generated by revolving $y=20.0 \cos 0.0196 x(0 \leq x \leq 80.0 \mathrm{m})$ about the $y$ -axis. Find the volume within the dome.
Integrate each function by using the table in Appendix $D$.If an electric charge $Q$ is distributed along a wire of length $2 a$ the force $F$ exerted on an electric charge $q$ placed at point $P$ is $F=k q Q \int \frac{b d x}{\left(b^{2}+x^{2}\right)^{3 / 2}} .$ Integrate to find $F$ as a function of $x$.