## Educators

Problem 1

(a) Estimate the volume of the solid that lies below the surface $z=x y$ and above the rectangle
$$R=\{(x, y) | 0 \leqslant x \leqslant 6,0 \leqslant y \leqslant 4\}$$
Use a Riemann sum with $m=3, n=2,$ and a regular partition, and take the sample point to be the upper right corner of each square.
(b) Use the Midpoint Rule to estimate the volume of the solid in part (a).

Check back soon!

Problem 2

If $R=[0,4] \times[-1,2],$ use a Riemann sum with $m=2,$ $n=3$ to estimate the value of $\iint_{R}\left(1-x y^{2}\right)$ $dA$. Take the sample points to be (a) the lower right corners and (b) the upper left corners of the rectangles.

Check back soon!

Problem 3

(a) Use a Riemann sum with $m=n=2$ to estimate the value of $\iint_{R} x e^{-x y} d A,$ where $R=[0,2] \times[0,1] .$ Take the sample points to be upper right corners.
(b) Use the Midpoint Rule to estimate the integral in part (a).

Check back soon!

Problem 4

(a) Estimate the volume of the solid that lies below the surface $z=x+2 y^{2}$ and above the rectangle $R=[0,2] \times[0,4] .$ Use a Riemann sum with $m=n=2$ and choose the sample points to be lower
right corners.
(b) Use the Midpoint Rule to estimate the volume in part (a).
(c) Evaluate the double integral and compare your answer with the estimates in parts (a) and (b).

Check back soon!

Problem 5

A contour map is shown for a function $f$ on the square $R=[0,4] \times[0,4] .$ Use the Midpoint Rule with $m=n=2$ to estimate the value of $\iint_{R} f(x, y) d A.$

Check back soon!

Problem 6

$\mathrm{A} 20-\mathrm{ft}-\mathrm{by}-30-\mathrm{ft}$swimming pool is filled with water. The depth is measured at 5 -foot intervals, starting at one corner of the pool, and the values are recorded in the table. Estimate the volume of water in the pool.
$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & {0} & {5} & {10} & {15} & {20} & {25} & {30} \\ \hline 0 & {2} & {3} & {4} & {6} & {7} & {8} & {8} \\ {5} & {2} & {3} & {4} & {7} & {8} & {10} & {8} \\ {10} & {2} & {4} & {6} & {8} & {10} & {12} & {10} \\ {15} & {2} & {3} & {4} & {5} & {6} & {8} & {7} \\ {20} & {2} & {2} & {2} & {2} & {3} & {4} & {4} \\ \hline\end{array}$$

Check back soon!

Problem 7

Evaluate the double integral by first identifying it as the volume of a solid.
$\iint_{R} 3 d A, \quad R=\{(x, y) |-2 \leqslant x \leqslant 2,1 \leqslant y \leqslant 6\}$

Check back soon!

Problem 8

Evaluate the double integral by first identifying it as the volume of a solid.
$\iint_{R}(5-x) d A, \quad R=\{(x, y) | 0 \leqslant x \leqslant 5,0 \leqslant y \leqslant 3\}$

Check back soon!

Problem 9

Evaluate the double integral by first identifying it as the volume of a solid.
$\iint_{R}(4-2 y) d A, \quad R=[0,1] \times[0,1]$

Check back soon!

Problem 10

The integral $\iint_{R} \sqrt{9-y^{2}} d A,$ where $R=[0,4] \times[0,2]$ represents the volume of a solid. Sketch the solid.

Check back soon!

Problem 11

Calculate the iterated integral.
$\int_{1}^{4} \int_{0}^{2}\left(6 x^{2} y-2 x\right) d y d x$

Check back soon!

Problem 12

Calculate the iterated integral.
$\int_{0}^{1} \int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) d y d x$

Check back soon!

Problem 13

Calculate the iterated integral.
$\int_{0}^{2} \int_{0}^{4} y^{3} e^{2 x} d y d x$

Check back soon!

Problem 14

Calculate the iterated integral.
$\int_{1}^{3} \int_{1}^{5} \frac{\ln y}{x y} d y d x$

Check back soon!

Problem 15

Calculate the iterated integral.
$\int_{-3}^{3} \int_{0}^{\pi / 2}\left(y+y^{2} \cos x\right) d x d y$

Check back soon!

Problem 16

Calculate the iterated integral.
$\int_{0}^{1} \int_{0}^{3} e^{x+3 y} d x d y$

Check back soon!

Problem 17

Calculate the iterated integral.
$\int_{1}^{4} \int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) d y d x$

Check back soon!

Problem 18

Calculate the iterated integral.
$\int_{0}^{1} \int_{0}^{1} \sqrt{s+t} d s d t$

Check back soon!

Problem 19

Calculate the iterated integral.
$\int_{0}^{1} \int_{0}^{1} v\left(u+v^{2}\right)^{4} d u d v$

Check back soon!

Problem 20

Calculate the iterated integral.
$\int_{0}^{1} \int_{0}^{1} x y \sqrt{x^{2}+y^{2}} d y d x$

Check back soon!

Problem 21

Calculate the double integral.
$\iint_{R} \frac{x y^{2}}{x^{2}+1} d A, \quad R=\{(x, y) | 0 \leqslant x \leqslant 1,-3 \leqslant y \leqslant 3\}$

Check back soon!

Problem 22

Calculate the double integral.
$\iint_{R}\left(y+x y^{-2}\right) d A, \quad R=\{(x, y) | 0 \leqslant x \leqslant 2,1 \leqslant y \leqslant 2\}$

Check back soon!

Problem 23

Calculate the double integral.
$\iint_{R} x \sin (x+y) d A, \quad R=[0, \pi / 6] \times[0, \pi / 3]$

Check back soon!

Problem 24

Calculate the double integral.
$\iint_{R} \frac{1+x^{2}}{1+y^{2}} d A, \quad R=\{(x, y) | 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\}$

Check back soon!

Problem 25

Calculate the double integral.
$\iint_{R} y e^{-x y} d A, \quad R=[0,2] \times[0,3]$

Check back soon!

Problem 26

Calculate the double integral.
$\iint_{R} \frac{x}{1+x y} d A, \quad R=[0,1] \times[0,1]$

Check back soon!

Problem 27

Sketch the solid whose volume is given by the iterated integral.
$\int_{0}^{1} \int_{0}^{1}(4-x-2 y) d x d y$

Check back soon!

Problem 28

Sketch the solid whose volume is given by the iterated integral.
$\int_{0}^{1} \int_{0}^{1}\left(2-x^{2}-y^{2}\right) d y d x$

Check back soon!

Problem 29

Find the volume of the solid that lies under the plane $4 x+6 y-2 z+15=0$ and above the rectangle $R=\{(x, y) |-1 \leqslant x \leqslant 2,-1 \leqslant y \leqslant 1\}.$

Check back soon!

Problem 30

Find the volume of the solid that lies under the hyperbolic paraboloid $z=3 y^{2}-x^{2}+2$ and above the rectangle $R=[-1,1] \times[1,2].$

Check back soon!

Problem 31

Find the volume of the solid lying under the elliptic paraboloid $x^{2} / 4+y^{2} / 9+z=1$ and above the rectangle $R=[-1,1] \times[-2,2].$

Check back soon!

Problem 32

Find the volume of the solid enclosed by the surface $z=1+e^{x} \sin y$ and the planes $x=\pm 1, y=0, y=\pi$ and $z=0.$

Check back soon!

Problem 33

Find the volume of the solid enclosed by the surface $z=x \sec ^{2} y$ and the planes $z=0, x=0, x=2, y=0$ and $y=\pi / 4.$

Check back soon!

Problem 34

Find the volume of the solid in the first octant bounded by the cylinder $z=16-x^{2}$ and the plane $y=5 .$

Check back soon!

Problem 35

Find the volume of the solid enclosed by the paraboloid $z=2+x^{2}+(y-2)^{2}$ and the planes $z=1, x=1$ $x=-1, y=0,$ and $y=4.$

Check back soon!

Problem 36

Graph the solid that lies between the surface $z=2 x y /\left(x^{2}+1\right)$ and the plane $z=x+2 y$ and is bounded by the planes $x=0, x=2, y=0,$ and $y=4$ Then find its volume.

Check back soon!

Problem 37

Use a computer algebra system to find the exact value of the integral $\iint_{R} x^{5} y^{3} e^{x y} d A,$ where $R=[0,1] \times[0,1] .$ Then use the CAS to draw the solid whose volume is given by the integral.

Check back soon!

Problem 38

Graph the solid that lies between the surfaces $z=e^{-x^{2}} \cos \left(x^{2}+y^{2}\right)$ and $z=2-x^{2}-y^{2}$ for $|x| \leqslant 1$ $|y| \leqslant 1 .$ Use a computer algebra system to approximate the volume of this solid correct to four decimal places.

Check back soon!

Problem 39

The average value of a function $f(x, y)$ over a rectangle $R$ is defined to be
$$f_{\mathrm{ave}}=\frac{1}{A(R)} \iint_{R} f(x, y) d A$$
(Compare with the definition for functions of one variable in Section $5.4 .$) . Find the average value of $f$ over the given rectangle.
$f(x, y)=x^{2} y$ $R$ has vertices $(-1,0),(-1,5),(1,5),(1,0)$

Check back soon!

Problem 40

The average value of a function $f(x, y)$ over a rectangle $R$ is defined to be
$$f_{\mathrm{ave}}=\frac{1}{A(R)} \iint_{R} f(x, y) d A$$
(Compare with the definition for functions of one variable in Section $5.4 .$) . Find the average value of $f$ over the given rectangle.
$f(x, y)=e^{y} \sqrt{x+e^{y}}, \quad R=[0,4] \times[0,1]$

Check back soon!

Problem 41

If $f$ is a constant function, $f(x, y)=k,$ and $R=[a, b] \times[c, d],$ show that
$$\iint_{R} k d A=k(b-a)(d-c)$$

Check back soon!

Problem 42

Use the result of Exercise 41 to show that
$$0 \leqslant \iint_{R} \sin \pi x \cos \pi y d A \leqslant \frac{1}{32}$$
where $R=\left[0, \frac{1}{4}\right] \times\left[\frac{1}{4}, \frac{1}{2}\right]$

Check back soon!

Problem 43

Use symmetry to evaluate the double integral.
$\iint_{R} \frac{x y}{1+x^{4}} d A, \quad R=\{(x, y) |-1 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\}$

Check back soon!

Problem 44

Use symmetry to evaluate the double integral.
$\iint_{R}\left(1+x^{2} \sin y+y^{2} \sin x\right) d A, \quad R=[-\pi, \pi] \times[-\pi, \pi]$

Check back soon!

Problem 45

Use your CAS to compute the iterated integrals
$$\int_{0}^{1} \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y d x \quad \text { and } \quad \int_{0}^{1} \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x d y$$
(b) If $f(x, y)$ is continuous on $[a, b] \times[c, d]$ and
$$g(x, y)=\int_{a}^{x} \int_{c}^{y} f(s, t) d t d s$$
for $a< x < b, c < y < d,$ show that $g_{x y}=g_{y x}=f(x, y).$