In Exercises 17 and $18,$ all vectors and subspaces are in $\mathbb{R}^{n} .$ Mark each statement True or False. Justify each answer.
a. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for $W,$ then mul- tiplying $\mathbf{v}_{3}$ by a scalar $c$ gives a new orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, c \mathbf{v}_{3}\right\} .$
b. The Gram-Schmidt process produces from a linearly in-
dependent set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ an orthogonal set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ with the property that for each $k,$ the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span the same subspace as that spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$
c. If $A=Q R,$ where $Q$ has orthonormal columns, then $R=Q^{T} A$