Chapter 18

Practice Test 2

Educators

RB
VA

Problem 1

Directions: Solve each of the following problems, using the available space for scratchwork. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the test book. Do not spend too much time on any one problem.
In this test: Unless otherwise specified, the domain of a function $f$ is assumed to be the set of all real numbers $x$ for which $f(x)$ is a real number.
If $g(x)=\frac{1}{32} x^{4}-5 x^{2},$ find $g^{\prime}(4)$
$\begin{array}{ll}{\text { (A) }} & {-72} \\ {\text { (B) }} & {-32} \\ {\text { (C) }} & {24} \\ {\text { (D) }} & {32}\end{array}$

Check back soon!

Problem 2

Directions: Solve each of the following problems, using the available space for scratchwork. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the test book. Do not spend too much time on any one problem.
In this test: Unless otherwise specified, the domain of a function $f$ is assumed to be the set of all real numbers $x$ for which $f(x)$ is a real number.
$\lim _{x \rightarrow 0} \frac{8 x^{2}}{\cos x-1}=$
(A) $-16$
(B) $-1$
(C) 8
(D) 6

Check back soon!

Problem 3

Directions: Solve each of the following problems, using the available space for scratchwork. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the test book. Do not spend too much time on any one problem.
In this test: Unless otherwise specified, the domain of a function $f$ is assumed to be the set of all real numbers $x$ for which $f(x)$ is a real number.
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}$
$\begin{array}{ll}{\text { (A) }} & {0} \\ {\text { (B) }} & {10}\end{array}$
(C) 5
(D) The limit does not exist.

Check back soon!

Problem 4

Directions: Solve each of the following problems, using the available space for scratchwork. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the test book. Do not spend too much time on any one problem.
In this test: Unless otherwise specified, the domain of a function $f$ is assumed to be the set of all real numbers $x$ for which $f(x)$ is a real number.
If $f(x)=\frac{x^{5}-x+2}{x^{3}+7},$ find $f^{\prime}(x)$
(A) $\frac{\left(5 x^{4}-1\right)}{\left(3 x^{2}\right)}$
(B) $\quad \frac{\left(x^{3}+7\right)\left(5 x^{4}-1\right)-\left(x^{5}-x+2\right)\left(3 x^{2}\right)}{\left(x^{3}+7\right)}$
(C) $\quad \frac{\left(x^{5}-x+2\right)\left(3 x^{2}\right)-\left(x^{3}+7\right)\left(5 x^{4}-1\right)}{\left(x^{3}+7\right)^{2}}$
(D) $\quad \frac{\left(x^{3}+7\right)\left(5 x^{4}-1\right)-\left(x^{5}-x+2\right)\left(3 x^{2}\right)}{\left(x^{3}+7\right)^{2}}$

Check back soon!

Problem 5

Directions: Solve each of the following problems, using the available space for scratchwork. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the test book. Do not spend too much time on any one problem.
In this test: Unless otherwise specified, the domain of a function $f$ is assumed to be the set of all real numbers $x$ for which $f(x)$ is a real number.
Evaluate $5\left(\frac{1}{2}+h\right)^{4}-5\left(\frac{1}{2}\right)^{4}$
$\lim _{h \rightarrow 0} \frac{5\left(\frac{1}{2}+h\right)^{4}-5\left(\frac{1}{2}\right)^{4}}{h}$
(A) $\frac{5}{2}$
(B) $\frac{5}{16}$
(C) 160
(D) The limit does not exist.

Check back soon!

Problem 6

Directions: Solve each of the following problems, using the available space for scratchwork. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the test book. Do not spend too much time on any one problem.
In this test: Unless otherwise specified, the domain of a function $f$ is assumed to be the set of all real numbers $x$ for which $f(x)$ is a real number.
$\int x \sqrt{3 x} d x=$
(A) $\frac{2 \sqrt{3}}{5} x^{\frac{5}{2}}+C$
(B) $\frac{5 \sqrt{3}}{2} x^{\frac{5}{2}}+C$
(C) $\frac{\sqrt{3}}{2} x^{\frac{1}{2}}+C$
(()) $\frac{5 \sqrt{3}}{2} x^{\frac{3}{2}}+C$

Check back soon!

Problem 7

Find $k$ so that $f(x)=\left\{\begin{array}{ll}{\frac{x^{2}-16}{x-4} ;} & {x \neq 4} \\ {k} & { ; x=4}\end{array}\right.$
(A) 0
(B) 16
(C) 8
(D) There is no real value of $k$ that makes $f(x)$ continuous for all $x$ .

Check back soon!

Problem 8

Which of the following integrals correctly gives the area of the region consisting of all points above the $x$ -axis and below the curve $y=8+2 x-x^{2} ?$
(A) $\int_{-2}^{4}\left(x^{2}-2 x-8\right) d x$
(B) $\int_{-4}^{2}\left(8+2 x-x^{2}\right) d x$
(C) $\int_{-2}^{4}\left(8+2 x-x^{2}\right) d x$
(D) $\int_{-4}^{2}\left(x^{2}-2 x-8\right) d x$

Check back soon!

Problem 9

If $f(x)=x^{2} \cos 2 x,$ find $f^{\prime}(x)$
(A) $-2 x \cos 2 x+2 x^{2} \sin 2 x$
(B) $-4 x \sin 2 x$
(C) $2 x \cos 2 x-2 x^{2} \sin 2 x$
(D) $2 x-2 \sin 2 x$

Check back soon!

Problem 10

An equation of the line tangent to $y=4 x^{3}-7 x^{2}$ at $x=3$ is
(A) $y+45=66(x+3)$
(B) $y-45=66(x-3)$
(C) $y=66 x$
(D) $y+45=\frac{-1}{66}(x-3)$

Check back soon!

Problem 11

$\int_{0}^{\frac{1}{2}} \frac{2}{\sqrt{1-x^{2}}} d x=$
$\begin{array}{ll}{(\mathrm{A})} & {\frac{\pi}{3}} \\ {\text { (B) }} & {\frac{\pi}{3}} \\ {\text { (C) }} & {\frac{2 \pi}{3}}\end{array}$
(D) $\quad-\frac{2 \pi}{3}$

Check back soon!

Problem 12

Find a positive value $c,$ for $x$ , that satisfies the conclusion of the Mean Value Theorem for
Derivatives for $f(x)=3 x^{2}-5 x+1$ on the interval $[2,5] .$
$\begin{array}{ll}{(\mathrm{A})} & {1} \\ {\text { (B) }} & {\frac{11}{6}} \\ {\text { (C) }} & {\frac{23}{6}} \\ {\text { (D) }} & {\frac{7}{2}}\end{array}$

Check back soon!

Problem 13

Given $f(x)=2 x^{2}-7 x-10,$ find the absolute maximum of $f(x)$ on $[-1,3]$
(A) $-1$
(B) $\frac{7}{4}$
(C) $-\frac{129}{8}$
(D) 0

Susanna T.
Numerade Educator

Problem 14

Find $\frac{d y}{d x}$ if $x^{3} y+x y^{3}=-10$
(A) $\left(3 x^{2}+3 x y^{2}\right)$
(B) $\frac{\left(3 x^{2} y+y^{3}\right)}{\left(3 x y^{2}+x^{3}\right)}$
(C) $-\frac{\left(3 x^{2} y+y^{3}\right)}{\left(3 x y^{2}+x^{3}\right)}$
(D) $-\frac{\left(x^{2} y+y^{3}\right)}{\left(x y^{2}+x^{3}\right)}$

Check back soon!

Problem 15

$\lim _{x \rightarrow 0} \frac{x \cdot 2^{x}}{2^{x}-1}=$
(A) $\ln 2$
(B) 1
(C) 2
(D) $\quad \frac{1}{\ln 2}$

Check back soon!

Problem 16

$\int 7 x e^{3 x^{2}} d x=$
(A) $\frac{6}{7} e^{3 x^{2}}+C$
(B) $\frac{7}{6} e^{3 x^{2}+C}$
(C) $7 e^{3} x^{2}+C$
(D) $42 e^{3 x^{2}}+C$

Check back soon!

Problem 17

Find the equation of the tangent line to $9 x^{2}+16 y^{2}=52$ through $(2,-1)$
(A) $-9 x+8 y-26=0$
(B) $9 x-8 y-26=0$
(C) $9 x-8 y-106=0$
(D) $8 x+9 y-17=0$

Check back soon!

Problem 18

A particle's position is given by $s=t^{3}-6 t^{2}+9 t .$ What is its acceleration at time $t=4 ?$
(A) 0
(B) $-9$
(C) $-12$
(D) 12

Check back soon!

Problem 19

If $f(x)=3^{\pi x},$ then $f^{\prime}(x)=$
(A) $\frac{3^{\pi x}}{\ln 3}$
(B) $\frac{3^{\pi x}}{\pi}$
(C) $\pi\left(3^{\pi x-1}\right)$
(D) $\pi \ln 3\left(3^{\pi r}\right)$

Check back soon!

Problem 20

The average value of $f(x)=\frac{1}{x}$ from $x=1$ to $x=e$ is
(A) $\quad \frac{1}{e+1}$
$\begin{array}{ll}{\text { (B) }} & {\frac{1}{1-e}} \\ {\text { (C) }} & {e-1} \\ {\text { (D) }} & {\frac{1}{e-1}}\end{array}$

Check back soon!

Problem 21

If $f(x)=\sin ^{2} x,$ find $f^{\prime \prime \prime}(x)$
(A) $\quad-\sin ^{2} x$
(B) $\cos 2 x$
(C) $-4 \sin 2 x$
(D) $-\sin 2 x$

Check back soon!

Problem 22

Find the slope of the normal line to $y=x+\cos x y$ at $(0,1)$
(A) 1
(B) $-1$
(C) 0
(D) Undefined

RB
Rekhia B.
Numerade Educator

Problem 23

$\int e^{x}\left(e^{3 x}\right) d x=$
(A) $\frac{1}{3} e^{3 x}+C$
(B) $\frac{1}{4} e^{4 x}+C$
(C) $\frac{1}{4} e^{5 x}+C$
(D) $4 e^{4 x}+C$

VA
Vasila A.
Numerade Educator

Problem 24

$\lim _{x \rightarrow 0} \frac{\tan ^{3}(2 x)}{x^{3}}=$
(A) $-8$
(B) 2
(C) 8
(D) The limit does not exist.

Check back soon!

Problem 25

A solid is generated when the region in the first quadrant bounded by the graph of $y=1+\sin ^{2} x,$ the line $x=\frac{\pi}{2},$ the $x$ -axis, and the $y$ -axis is revolved about the $x$ -axis. Its volume is found by evaluating which of the following integrals?
(A) $\pi \int_{0}^{1}\left(1+\sin ^{4} x\right) d x$
(B) $\pi \int_{0}^{1}\left(1+\sin ^{2} x\right)^{2} d x$
(C) $\pi \int_{0}^{\frac{\pi}{2}}\left(1+\sin ^{4} x\right) d x$
(D) $\pi \int_{0}^{\frac{\pi}{2}}\left(1+\sin ^{2} x\right)^{2} d x$

Check back soon!

Problem 26

If $y=\left(\frac{x^{3}-2}{2 x^{5}-1}\right)^{4},$ find $\frac{d y}{d x}$ at $x=1$
$\begin{array}{ll}{\text { (A) }} & {-52} \\ {\text { (B) }} & {-28} \\ {\text { (C) }} & {13} \\ {\text { (D) }} & {52}\end{array}$

Check back soon!

Problem 27

$\int x \sqrt{5-x} d x=$
(A) $-\frac{10}{3}(5-x)^{\frac{3}{2}}$
(B) $\frac{10}{3} \sqrt{\frac{5 x^{2}}{2}-\frac{x^{3}}{3}}+C$
(C) $10(5-x)^{\frac{1}{2}}+\frac{2}{3}(5-x)^{\frac{3}{2}}+C$
(D) $\quad-\frac{10}{3}(5-x)^{\frac{3}{2}}+\frac{2}{5}(5-x)^{\frac{5}{2}}+C$

Check back soon!

Problem 28

If $\frac{d y}{d x}=\frac{x^{3}+1}{y}=$ and $y=2$ when $x=1,$ then, when $x=2, y=$
(A) $\sqrt{\frac{27}{2}}$
(B) $\sqrt{\frac{27}{8}}$
(C) $\pm \sqrt{\frac{27}{8}}$
(D) $\pm \sqrt{\frac{27}{2}}$

Check back soon!

Problem 29

The graph of $y=5 x^{4}-x^{5}$ has an inflection point (or points) at
(A) $x=3$ only
(B) $x=0,3$
(C) $x=-3$ only
(D) $x=0,-3$

Check back soon!

Problem 30

$\int_{0}^{1} \tan x d x=$
(A) 0
(B) $\ln (\cos (1))$
(C) $\ln (\sec (1))$
(D) $\ln (\sec (1))-1$

Corinne R.
Numerade Educator