Books(current) Courses (current) Earn 💰 Log in(current)

Chapter 19

Practice Test 3

Educators


Problem 1

$\int_{\frac{\pi}{4}}^{x} \cos (2 t) d t=$
(A) $\cos (2 x)$
(B) $\frac{\sin (2 x)-1}{2}$
(C) $\cos (2 x)-1$
(D) $\frac{\sin 2(x)}{2}$

Check back soon!

Problem 2

What are the coordinates of the point of inflection on the graph of $y=x^{3}-15 x^{2}+33 x+100 ?$
(A) $\quad(9,0)$
(B) $(5,-48)$
(C) $(9,-89)$
(D) $\quad(5,15)$

Check back soon!

Problem 3

If $3 x^{2}-2 x y+3 y=1,$ then when $x=2, \frac{d y}{d x}=$
(A) $\quad-12$
(B) $\quad-10$
(C) $-\frac{10}{7}$
(D) 12

Check back soon!

Problem 4

$\int_{1}^{3} \frac{8}{x^{3}} d x=$
(A) $\frac{32}{9}$
(B) $\frac{40}{9}$
(C) 0
(D) $-\frac{32}{9}$

Check back soon!

Problem 5

The graph of a piecewise linear function $f,$ for $0 \leq x \leq 8,$ is shown above. What is the value of $\int_{0}^{8} f(x) d x ?$
(A) 1
(B) 4
(C) 8
(D) 10

Check back soon!

Problem 6

$\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$
(A) 0
(B) 1
(C) 2
(D) Does not exist

Check back soon!

Problem 7

If $f(x)=x^{2} \sqrt{3 x+1},$ then $f^{\prime}(x)=$
(A) $\frac{9 x^{2}+2 x}{\sqrt{3 x+1}}$
(B) $\frac{-9 x^{2}+4 x}{2 \sqrt{3 x+1}}$
(C) $\frac{15 x^{2}+4 x}{2 \sqrt{3 x+1}}$
(D) $\frac{-9 x^{2}-4 x}{2 \sqrt{3 x+1}}$

Check back soon!

Problem 8

What is the instantaneous rate of change at $t=-1$ of the function $f,$ if $f(t)=\frac{t^{3}+t}{4 t+1} ?$
(A) $\frac{12}{9}$
(B) $\frac{4}{9}$
(C) $-\frac{4}{9}$
(D) $-\frac{12}{9}$

Check back soon!

Problem 9

$\int_{2}^{e+1}\left(\frac{4}{x-1}\right) d x=$
(A) 4
(B) 4$e$
(C) 0
(D) $-4$

Check back soon!

Problem 10

A car's velocity is shown on the graph above. Which of the following gives the total distance traveled from $t=0$ to $t=16$ (in kilometers)?
(A) $\quad 360$
(B) 390
(C) 780
(D) $1,000$

Check back soon!

Problem 11

$\frac{d}{d x} \tan ^{2}(4 x)=$
(A) 8 $\tan (4 x)$
(B) 4 $\sec ^{4}(4 x)$
(C) 8 $\tan (4 x) \sec ^{2}(4 x)$
(D) 4 $\tan (4 x) \sec ^{2}(4 x)$

Check back soon!

Problem 12

What is the equation of the line tangent to the graph of $y=\sin ^{2} x$ at $x=\frac{\pi}{4} ?$
(A) $y-\frac{1}{2}=\left(x-\frac{\pi}{4}\right)$
(B) $y-\frac{1}{\sqrt{2}}=\left(x-\frac{\pi}{4}\right)$
(C) $y-\frac{1}{\sqrt{2}}=\frac{1}{2}\left(x-\frac{\pi}{4}\right)$
(D) $\quad y-\frac{1}{2}=\frac{1}{2}\left(x-\frac{\pi}{4}\right)$

Check back soon!

Problem 13

If the function $f(x)=\left\{\begin{array}{l}{3 a x^{2}+2 b x+1 ; x \leq 1} \\ {a x^{4}-4 b x^{2}-3 x ; x>1}\end{array}\right.$
(A) $-\frac{11}{4}$
(B) $\frac{1}{4}$
(C) 0
(D) $-\frac{1}{4}$

Check back soon!

Problem 14

The graph of $y=x^{4}+8 x^{3}-72 x^{2}+4$ is concave down for
(A) $-6<x<2$
(B) $x>2$
(C) $x<-6$
(D) $-3-3 \sqrt{5}<x<-3+3 \sqrt{5}$

Check back soon!

Problem 15

$\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{\log _{2} x}$
$\begin{array}{ll}{\text { (A) }} & {\frac{1}{\ln 2}} \\ {\text { (B) }} & {0} \\ {\text { (C) }} & {1} \\ {\text { (D) }} & {\ln 2}\end{array}$

Check back soon!

Problem 16

The graph of $f(x)$ is shown in the figure above. Which of the following could be the graph of $f^{\prime}(x) ?$
A) graph IS NOT AVAILABLE TO COPY
B) graph IS NOT AVAILABLE TO COPY
C) graph IS NOT AVAILABLE TO COPY
D) graph IS NOT AVAILABLE TO COPY

Check back soon!

Problem 17

If $f(x)=\ln (\cos (3 x)),$ then $f^{\prime}(x)=$
$\begin{array}{ll}{\text { (A) }} & {3 \sec (3 x)} \\ {\text { (B) }} & {3 \tan (3 x)} \\ {\text { (C) }} & {-3 \tan (3 x)} \\ {\text { (D) }} & {-3 \cot (3 x)}\end{array}$

Check back soon!

Problem 18

If $f(x)=\int_{0}^{x+1} \sqrt[3]{t^{2}-1},$ then $f^{\prime}(-4)=$
(A) $-2$
(B) 2
(C) $\quad \sqrt[3]{15}$
(D) 0

Check back soon!

Problem 19

A particle moves along the $x$ -axis so that its position at time $t,$ in seconds, is given by $x(t)=t^{2}-7 t+$ $6 .$ For what value(s) of $t$ is the velocity of the particle zero?
$\begin{array}{ll}{\text { (A) }} & {1} \\ {\text { (B) }} & {6} \\ {\text { (C) }} & {1 \text { or } 6} \\ {\text { (D) }} & {3.5}\end{array}$

Check back soon!

Problem 20

$\int_{0}^{\frac{\pi}{2}} \sin (2 x) e^{\sin ^{2} x} d x=$
$\begin{array}{ll}{(\mathrm{A})} & {e-1} \\ {(\mathrm{B})} & {1-e} \\ {(\mathrm{C})} & {e+1} \\ {(\mathrm{D})} & {1}\end{array}$

Check back soon!

Problem 21

The average value of $\sec ^{2} x$ on the interval $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ is
(A) $\frac{12 \sqrt{3}-12}{\pi}$
(B) $\frac{12-4 \sqrt{3}}{\pi}$
(C) $\frac{6 \sqrt{2}-6}{\pi}$
(D) $\frac{6-6 \sqrt{2}}{\pi}$

Check back soon!

Problem 22

Find the area of the region bounded by the parabolas $y=x^{2}$ and $y=6 x-x^{2}$
(A) 9
(B) 27
(C) $-9$
(D) $-18$

Check back soon!

Problem 23

The function $f$ is given by $f(x)=x^{4}+4 x^{3} .$ On which of the following intervals is $f$ decreasing?
(A) $\quad(-3,0)$
(B) $(0, \infty)$
(C) $(-3, \infty)$
(D) $(-\infty,-3)$

Check back soon!

Problem 24

$\lim _{x \rightarrow 0} \frac{\tan (3 x)+3 x}{\sin (5 x)}=$
(A) 0
(B) $\frac{3}{5}$
(C) $\frac{6}{5}$
(D) Nonexistent

Check back soon!

Problem 25

If the region enclosed by the $y$ -axis, the curve $y=4 \sqrt{x},$ and the line $y=8$ is revolved about the $x-$ axis, the volume of the solid generated is
$\begin{array}{ll}{\text { (A) }} & {\frac{32 \pi}{3}} \\ {\text { (B) }} & {128 \pi} \\ {\text { (C) }} & {\frac{128}{3}} \\ {\text { (D) }} & {\frac{128 \pi}{3}}\end{array}$

Check back soon!

Problem 26

The maximum velocity attained on the interval $0 \leq t \leq 5,$ by the particle whose displacement is given by $s(t)=2 t^{3}-12 t^{2}+16 t+2$ is
$\begin{array}{ll}{(\mathrm{A})} & {286} \\ {\text { (B) }} & {46} \\ {\text { (C) }} & {16} \\ {\text { (D) }} & {0}\end{array}$

Check back soon!

Problem 27

The value of $c$ that satisfies the Mean Value Theorem for derivatives on the interval $[0,5]$ for the function $f(x)=x^{3}-6 x$ is
(A) 0
(B) 1
(C) $\frac{5}{3}$
(D) $\frac{5}{\sqrt{3}}$

Check back soon!

Problem 28

If $f(x)=\sec (4 x),$ then $f\left(\frac{\pi}{16}\right)$ is
(A) 4$\sqrt{2}$
(B) $\sqrt{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{4}{\sqrt{2}}$

Check back soon!

Problem 29

$\frac{d}{d x} \int_{2 x}^{5 x} \cos t d t=$
(A) $5 \cos 5 x-2 \cos 2 x$
(B) $5 \sin 5 x-2 \sin 2 x$
(C) $\cos 5 x-\cos 2 x$
(D) $\sin 5 x-\sin 2 x$

Check back soon!

Problem 30

$\quad$ Let $g(x)=\int_{0}^{x} f(t) d t$ where $f(t)$ has the graph shown above. Which of the following could be the graph of $g ?$
A) graph IS NOT AVAILABLE TO COPY
B) graph IS NOT AVAILABLE TO COPY
C) graph IS NOT AVAILABLE TO COPY
D) graph IS NOT AVAILABLE TO COPY

Check back soon!