# Calculus Early Transcendentals

## Educators

Problem 1

$1-2$ Evaluate the integral using integration by parts with the indicated choices of $u$ and $d v .$
$$\int x^{2} \ln x d x ; \quad u=\ln x, d v=x^{2} d x$$

Check back soon!

Problem 2

$1-2$ Evaluate the integral using integration by parts with the indicated choices of $u$ and $d v .$
$$\int \theta \cos \theta d \theta ; \quad u=\theta, d v=\cos \theta d \theta$$

Check back soon!

Problem 3

$3-36$ Evaluate the integral.
$$\int x \cos 5 x d x$$

Check back soon!

Problem 4

$3-36$ Evaluate the integral.
$$\int y e^{0.2 y} d y$$

Check back soon!

Problem 5

$3-36$ Evaluate the integral.
$$\int t e^{-3 t} d t$$

Check back soon!

Problem 6

$3-36$ Evaluate the integral.
$$\int(x-1) \sin \pi x d x$$

Check back soon!

Problem 7

$3-36$ Evaluate the integral.
$$\int\left(x^{2}+2 x\right) \cos x d x$$

Check back soon!

Problem 8

$3-36$ Evaluate the integral.
$$\int t^{2} \sin \beta t d t$$

Check back soon!

Problem 9

$3-36$ Evaluate the integral.
$$\int \ln \sqrt{x} d x$$

Check back soon!

Problem 10

$3-36$ Evaluate the integral.
$$\int \sin ^{-1} x d x$$

Check back soon!

Problem 11

$3-36$ Evaluate the integral.
$$\int \arctan 4 t d t$$

Check back soon!

Problem 12

$3-36$ Evaluate the integral.
$$\int p^{5} \ln p d p$$

Check back soon!

Problem 13

$3-36$ Evaluate the integral.
$$\int t \sec ^{2} 2 t d t$$

Check back soon!

Problem 14

$3-36$ Evaluate the integral.
$$\int s 2^{s} d s$$

Check back soon!

Problem 15

$3-36$ Evaluate the integral.
$$\int(\ln x)^{2} d x$$

Check back soon!

Problem 16

$3-36$ Evaluate the integral.
$$\int t \sinh m t d t$$

Check back soon!

Problem 17

$3-36$ Evaluate the integral.
$$\int e^{2 \theta} \sin 3 \theta d \theta$$

Check back soon!

Problem 18

$3-36$ Evaluate the integral.
$$\int e^{-\theta} \cos 2 \theta d \theta$$

Check back soon!

Problem 19

$3-36$ Evaluate the integral.
$$\int z^{3} e^{z} d z$$

Check back soon!

Problem 20

$3-36$ Evaluate the integral.
$$\int x \tan ^{2} x d x$$

Check back soon!

Problem 21

$3-36$ Evaluate the integral.
$$\int \frac{x e^{2 x}}{(1+2 x)^{2}} d x$$

Check back soon!

Problem 22

$3-36$ Evaluate the integral.
$$\int(\arcsin x)^{2} d x$$

Check back soon!

Problem 23

$3-36$ Evaluate the integral.
$$\int_{0}^{1 / 2} x \cos \pi x d x$$

Check back soon!

Problem 24

$3-36$ Evaluate the integral.
$$\int_{0}^{1}\left(x^{2}+1\right) e^{-x} d x$$

Check back soon!

Problem 25

$3-36$ Evaluate the integral.
$$\int_{0}^{1} t \cosh t d t$$

Check back soon!

Problem 26

$3-36$ Evaluate the integral.
$$\int_{4}^{9} \frac{\ln y}{\sqrt{y}} d y$$

Check back soon!

Problem 27

$3-36$ Evaluate the integral.
$$\int_{1}^{3} r^{3} \ln r d r$$

Check back soon!

Problem 28

$3-36$ Evaluate the integral.
$$\int_{0}^{2 \pi} t^{2} \sin 2 t d t$$

Check back soon!

Problem 29

$3-36$ Evaluate the integral.
$$\int_{0}^{1} \frac{y}{e^{2 y}} d y$$

Check back soon!

Problem 30

$3-36$ Evaluate the integral.
$$\int_{1}^{\sqrt{3}} \arctan (1 / x) d x$$

Check back soon!

Problem 31

$3-36$ Evaluate the integral.
$$\int_{0}^{1 / 2} \cos ^{-1} x d x$$

Check back soon!

Problem 32

$3-36$ Evaluate the integral.
$$\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} d x$$

Check back soon!

Problem 33

$3-36$ Evaluate the integral.
$$\int \cos x \ln (\sin x) d x$$

Check back soon!

Problem 34

$3-36$ Evaluate the integral.
$$\int_{0}^{1} \frac{r^{3}}{\sqrt{4+r^{2}}} d r$$

Check back soon!

Problem 35

$3-36$ Evaluate the integral.
$$\int_{1}^{2} x^{4}(\ln x)^{2} d x$$

Check back soon!

Problem 36

$3-36$ Evaluate the integral.
$$\int_{0}^{t} e^{s} \sin (t-s) d s$$

Check back soon!

Problem 37

$37-42$ First make a substitution and then use integration by parts to evaluate the integral.
$$\int \cos \sqrt{x} d x$$

Check back soon!

Problem 38

$37-42$ First make a substitution and then use integration by parts to evaluate the integral.
$$\int^{3} e^{-t} d t$$

Check back soon!

Problem 39

$37-42$ First make a substitution and then use integration by parts to evaluate the integral.
$$\int_{\sqrt{\pi / 2}}^{\sqrt{\pi}} \theta^{3} \cos \left(\theta^{2}\right) d \theta$$

Check back soon!

Problem 40

$37-42$ First make a substitution and then use integration by parts to evaluate the integral.
$$\int_{0}^{\pi} e^{\cos t} \sin 2 t d t$$

Check back soon!

Problem 41

$37-42$ First make a substitution and then use integration by parts to evaluate the integral.
$$\int x \ln (1+x) d x$$

Check back soon!

Problem 42

$37-42$ First make a substitution and then use integration by parts to evaluate the integral.
$$\int \sin (\ln x) d x$$

Check back soon!

Problem 43

$43-46$ Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its anti derivative (take $C=0 )$ .
$$\int x e^{-2 x} d x$$

Check back soon!

Problem 44

$43-46$ Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its anti derivative (take $C=0 )$ .
$$\int x^{3 / 2} \ln x d x$$

Check back soon!

Problem 45

$43-46$ Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its anti derivative (take $C=0 )$ .
$$\int x^{3} \sqrt{1+x^{2}} d x$$

Check back soon!

Problem 46

$43-46$ Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its anti derivative (take $C=0 )$ .
$$\int x^{2} \sin 2 x d x$$

Check back soon!

Problem 47

(a) Use the reduction formula in Example 6 to show that
$$\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}+C$$
(b) Use part (a) and the reduction formula to evaluate
$\int \sin ^{4} x d x .$

Check back soon!

Problem 48

(a) Prove the reduction formula
$$\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x$$
(b) Use part (a) to evaluate $\int \cos ^{2} x d x$
(c) Use parts (a) and (b) to evaluate $\int \cos ^{4} x d x$ .

Check back soon!

Problem 49

(a) Use the reduction formula in Example 6 to show that
$$\int_{0}^{\pi / 2} \sin ^{n} x d x=\frac{n-1}{n} \int_{0}^{\pi / 2} \sin ^{n-2} x d x$$
where $n \geqslant 2$ is an integer.
(b) Use part (a) to evaluate $\int_{0}^{\pi / 2} \sin ^{3} x d x$ and $\int_{0}^{\pi / 2} \sin ^{5} x d x$
(c) Use part (a) to show that, for odd powers of sine,
$$\int_{0}^{\pi / 2} \sin ^{2 n+1} x d x=\frac{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2 n}{3 \cdot 5 \cdot 7 \cdot \cdots \cdot(2 n+1)}$$

Check back soon!

Problem 50

Prove that, for even powers of sine,
$\int_{0}^{\pi / 2} \sin ^{2 n} X d x=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2 n} \frac{\pi}{2}$

Check back soon!

Problem 51

$51-54$ Use integration by parts to prove the reduction formula.
$$\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$$

Check back soon!

Problem 52

$51-54$ Use integration by parts to prove the reduction formula.
$$\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$$

Check back soon!

Problem 53

$51-54$ Use integration by parts to prove the reduction formula.
$$\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x \quad(n \neq 1)$$

Check back soon!

Problem 54

$51-54$ Use integration by parts to prove the reduction formula.
$$\int \sec ^{n} x d x=\frac{\tan x \sec ^{n-2} x}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x \quad(n \neq 1)$$

Check back soon!

Problem 55

Use Exercise 51 to find $\int(\ln x)^{3} d x$

Check back soon!

Problem 56

56. Use Exercise 52 to find $\int x^{4} e^{x} d x$

Check back soon!

Problem 57

$57-58$ Find the area of the region bounded by the given curves.
$$y=x^{2} \ln x, \quad y=4 \ln x$$

Check back soon!

Problem 58

$57-58$ Find the area of the region bounded by the given curves.
$$y=x^{2} e^{-x}, \quad y=x e^{-x}$$

Check back soon!

Problem 59

$59-60$ Use a graph to find approximate $x$ -coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves.
$$y=\arcsin \left(\frac{1}{2} x\right), \quad y=2-x^{2}$$

Check back soon!

Problem 60

$59-60$ Use a graph to find approximate $x$ -coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves.$$$y=x \ln (x+1), \quad y=3 x-x^{2}$$ Check back soon! Problem 61$61-63$Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis.$y=\cos (\pi x / 2), y=0,0 \leqslant x \leqslant 1 ; \quad$about the$y$-axis Check back soon! Problem 62$61-63$Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis.$y=e^{x}, y=e^{-x}, x=1 ;$about the$y$-axis Check back soon! Problem 63$61-63$Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis.$y=e^{-x}, y=0, x=-1, x=0 ; \quad$about$x=1$Check back soon! Problem 64 Calculate the volume generated by rotating the region bounded by the curves$y=\ln x, y=0,$and$x=2$about each axis. (a) the$y$-axis (b) the$x$-axis Check back soon! Problem 65 Calculate the average value of$f(x)=x \sec ^{2} x$on the interval$[0, \pi / 4] .$Check back soon! Problem 66 A rocket accelerates by burning its onboard fuel, so its mass decreases with time. Suppose the initial mass of the rocket at liftoff (including its fuel) is$m$, the fuel is consumed at rate$r,$and the exhaust gases are ejected with constant velocity$v_{e}$(relative to the rocket). A model for the velocity of the rocket at time$t$is given by the equation$v(t)=-g t-v_{c} \ln \frac{m-r t}{m}$where$g$is the acceleration due to gravity and$t$is not too large. If$g=9.8 \mathrm{m} / \mathrm{s}^{2}, m=30,000 \mathrm{kg}, r=160 \mathrm{kg} / \mathrm{s},$and$v_{e}=3000 \mathrm{m} / \mathrm{s},$find the height of the rocket one minute after liftoff. Check back soon! Problem 67 A particle that moves along a straight line has velocity$v(t)=t^{2} e^{-t}$meters per second after$t$seconds. How far will it travel during the first$t$seconds? Check back soon! Problem 68 If$f(0)=g(0)=0$and$f^{\prime \prime}$and$g^{\prime \prime}$are continuous, show that$\int_{0}^{a} f(x) g^{\prime \prime}(x) d x=f(a) g^{\prime}(a)-f^{\prime}(a) g(a)+\int_{0}^{a} f^{\prime \prime}(x) g(x) d x$Check back soon! Problem 69 Suppose that$f(1)=2, f(4)=7, f^{\prime}(1)=5, f^{\prime}(4)=3,$and$f^{\prime \prime}$is continuous. Find the value of$\int_{1}^{4} x f^{\prime \prime}(x) d x$Check back soon! Problem 70 (a) Use integration by parts to show that$\int f(x) d x=x f(x)-\int x f^{\prime}(x) d x$(b) If$f$and$g$are inverse functions and$f^{\prime}$is continuous, prove that$\int_{a}^{b} f(x) d x=b f(b)-a f(a)-\int_{f(a)}^{(b)} g(y) d y$[Hint: Use part (a) and make the substitution$y=f(x) . ]$(c) In the case where$f$and$g$are positive functions and$b>a>0,$draw a diagram to give a geometric interpret tion of part (b) (d) Use part (b) to evaluate$\int_{1}^{e} \ln x d x$Check back soon! Problem 71 We arrived at Formula$6.3 .2, V=\int_{a}^{b} 2 \pi x f(x) d x,$by using cylindrical shells, but now we can use integration by parts to prove it using the slicing method of Section$6.2,$at least for the case where$f$is one-to-one and therefore has an inverse function$g .$Use the figure to show that $$V=\pi b^{2} d-\pi a^{2} c-\int_{c}^{d} \pi[g(y)]^{2} d y$$ Make the substitution$y=f(x)$and then use integration by parts on the resulting integral to prove that$V=\int_{0}^{b} 2 \pi x f(x) d x$Check back soon! Problem 72 Let$I_{n}=\int_{0}^{\pi / 2} \sin ^{n} X d x$(a) Show that$I_{2 n+2} \leqslant I_{2 n+1} \leqslant I_{2 \pi}$(b) Use Exercise 50 to show that$\frac{I_{2 n+2}}{I_{2 n}}=\frac{2 n+1}{2 n+2}$c) Use parts (a) and (b) to show that$\frac{2 n+1}{2 n+2} \leqslant \frac{I_{2 n+1}}{I_{2 n}} \leqslant 1$and deduce that$\lim _{n \rightarrow \infty} I_{2 n+1} / L_{2 n}=1$(d) Use part$(\mathrm{c})\$ and Exercises 49 and 50 to show that
$$\lim _{n \rightarrow \infty} \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \ldots \cdot \frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}=\frac{\pi}{2}$$
This formula is usually written as an infinite product:
$$\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \dots$$
and is called the Wallis product.