# Calculus Early Transcendentals

## Educators

Problem 1

1-2 Evaluate the integral using integration by parts with the
indicated choices of $u$ and $d v .$
$$\int x^{2} \ln x d x ; \quad u=\ln x, d v=x^{2} d x$$

Check back soon!

Problem 2

1-2 Evaluate the integral using integration by parts with the
indicated choices of $u$ and $d v .$
$$\int \theta \cos \theta d \theta ; \quad u=\theta, d v=\cos \theta d \theta$$

Check back soon!

Problem 2

$3-32$ Evaluate the integral.
$$\int \theta \cos \theta d \theta ; \quad u=\theta, d v=\cos \theta d \theta$$

Check back soon!

Problem 3

$3-32$ Evaluate the integral.
$$\int x \cos 5 x d x$$

Check back soon!

Problem 4

$3-32$ Evaluate the integral.
$$\int x e^{-x} d x$$

Check back soon!

Problem 5

$3-32$ Evaluate the integral.
$$\int r e^{r / 2} d r$$

Check back soon!

Problem 6

$3-32$ Evaluate the integral.
$$\int t \sin 2 t d t$$

Check back soon!

Problem 7

$3-32$ Evaluate the integral.
$$\int x^{2} \sin \pi x d x$$

Check back soon!

Problem 8

$3-32$ Evaluate the integral.
$$\int x^{2} \cos m x d x$$

Check back soon!

Problem 9

$3-32$ Evaluate the integral.
$$\int \ln (2 x+1) d x$$

Check back soon!

Problem 10

$3-32$ Evaluate the integral.
$$\int \sin ^{-1} x d x$$

Check back soon!

Problem 11

$3-32$ Evaluate the integral.
$$\int \arctan 4 t d t$$

Check back soon!

Problem 12

$3-32$ Evaluate the integral.
$$\int p^{5} \ln p d p$$

Check back soon!

Problem 13

$3-32$ Evaluate the integral.
$$\int t \sec ^{2} 2 t d t$$

Check back soon!

Problem 14

$3-32$ Evaluate the integral.
$$\int s 2^{s} d s$$

Check back soon!

Problem 15

$3-32$ Evaluate the integral.
$$\int(\ln x)^{2} d x$$

Check back soon!

Problem 16

$3-32$ Evaluate the integral.
$$\int t \sinh m t d t$$

Check back soon!

Problem 17

$3-32$ Evaluate the integral.
$$\int e^{2 \theta} \sin 3 \theta d \theta$$

Check back soon!

Problem 18

$3-32$ Evaluate the integral.
$$\int e^{-\theta} \cos 2 \theta d \theta$$

Check back soon!

Problem 19

$3-32$ Evaluate the integral.
$$\int_{0}^{\pi} t \sin 3 t d t$$

Check back soon!

Problem 20

$3-32$ Evaluate the integral.
$$\int_{0}^{1}\left(x^{2}+1\right) e^{-x} d x$$

Check back soon!

Problem 21

$3-32$ Evaluate the integral.
$$\int_{0}^{1} t \cosh t d t$$

Check back soon!

Problem 22

$3-32$ Evaluate the integral.
$$\int_{4}^{9} \frac{\ln y}{\sqrt{y}} d y$$

Check back soon!

Problem 23

$3-32$ Evaluate the integral.
$$\int_{1}^{2} \frac{\ln x}{x^{2}} d x$$

Check back soon!

Problem 24

$3-32$ Evaluate the integral.
$$\int_{0}^{\pi} x^{3} \cos x d x$$

Check back soon!

Problem 25

$3-32$ Evaluate the integral.
$$\int_{0}^{1} \frac{y}{e^{2 y}} d y$$

Check back soon!

Problem 26

$3-32$ Evaluate the integral.
$$\int_{1}^{\sqrt{3}} \arctan (1 / x) d x$$

Check back soon!

Problem 27

$3-32$ Evaluate the integral.
$$\int_{0}^{1 / 2} \cos ^{-1} x d x$$

Check back soon!

Problem 28

$3-32$ Evaluate the integral.
$$\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} d x$$

Check back soon!

Problem 29

$3-32$ Evaluate the integral.
$$\int \cos x \ln (\sin x) d x$$

Check back soon!

Problem 30

$3-32$ Evaluate the integral.
$$\int_{0}^{1} \frac{r^{3}}{\sqrt{4+r^{2}}} d r$$

Check back soon!

Problem 31

$3-32$ Evaluate the integral.
$$\int_{1}^{2} x^{4}(\ln x)^{2} d x$$

Check back soon!

Problem 32

$3-32$ Evaluate the integral.
$$\int_{0}^{t} e^{s} \sin (t-s) d s$$

Check back soon!

Problem 33

$33-38$ First make a substitution and then use integration by parts
to evaluate the integral.
$$\int \cos \sqrt{x} d x$$

Check back soon!

Problem 34

$33-38$ First make a substitution and then use integration by parts
to evaluate the integral.
$$\int t^{3} e^{-t^{2}} d t$$

Check back soon!

Problem 35

$33-38$ First make a substitution and then use integration by parts
to evaluate the integral.
$$\int_{\sqrt{\pi / 2}}^{\sqrt{\pi}} \theta^{3} \cos \left(\theta^{2}\right) d \theta$$

Check back soon!

Problem 36

$33-38$ First make a substitution and then use integration by parts
to evaluate the integral.
$$\int_{0}^{\pi} e^{\cos t} \sin 2 t d t$$

Check back soon!

Problem 37

$33-38$ First make a substitution and then use integration by parts
to evaluate the integral.
$$\int x \ln (1+x) d x$$

Check back soon!

Problem 38

$33-38$ First make a substitution and then use integration by parts
to evaluate the integral.
$$\int \sin (\ln x) d x$$

Check back soon!

Problem 39

$39-42$ Evaluate the indefinite integral. Illustrate, and check that
antiderivative (take $C=0 )$ .
$$\int(2 x+3) e^{x} d x$$

Check back soon!

Problem 40

$39-42$ Evaluate the indefinite integral. Illustrate, and check that
antiderivative (take $C=0 )$ .
$$\int x^{3 / 2} \ln x d x$$

Check back soon!

Problem 41

$39-42$ Evaluate the indefinite integral. Illustrate, and check that
antiderivative (take $C=0 )$ .
$$\int x^{3} \sqrt{1+x^{2}} d x$$

Check back soon!

Problem 42

$39-42$ Evaluate the indefinite integral. Illustrate, and check that
antiderivative (take $C=0 )$ .
$$\int x^{2} \sin 2 x d x$$

Check back soon!

Problem 43

(a) Use the reduction formula in Example 6 to show that
$$\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}+C$$
(b) Use part (a) and the reduction formula to evaluate
$\int \sin ^{4} x d x$ .

Check back soon!

Problem 44

(a) Prove the reduction formula
$$\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x$$
(b) Use part (a) to evaluate $\int \cos ^{2} x d x$ .
(c) Use parts (a) and (b) to evaluate \int $\cos ^{4} x d x$ .

Check back soon!

Problem 45

(a) Use the reduction formula in Example 6 to show that
$$\int_{0}^{\pi / 2} \sin ^{n} x d x=\frac{n-1}{n} \int_{0}^{\pi / 2} \sin ^{n-2} x d x$$
where $n \geqslant 2$ is an integer.
(b) Use part (a) to evaluate $\int_{0}^{\pi / 2} \sin ^{3} x d x$ and $\int_{0}^{\pi / 2} \sin ^{5} x d x$
(c) Use part (a) to show that, for odd powers of sine,
$$\int_{0}^{\pi / 2} \sin ^{2 n+1} x d x=\frac{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2 n}{3 \cdot 5 \cdot 7 \cdot \cdots \cdot(2 n+1)}$$

Check back soon!

Problem 46

Prove that, for even powers of sine,
$$\int_{0}^{\pi / 2} \sin ^{2 n} x d x=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2 n} \frac{\pi}{2}$$

Check back soon!

Problem 47

$47-50$ Use integration by parts to prove the reduction formula.
$$\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$$

Check back soon!

Problem 48

$47-50$ Use integration by parts to prove the reduction formula.
$$\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$$

Check back soon!

Problem 49

$47-50$ Use integration by parts to prove the reduction formula.
$$\tan ^{n} X d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x \quad(n \neq 1)$$

Check back soon!

Problem 50

$47-50$ Use integration by parts to prove the reduction formula.
$$\int \sec ^{n} x d x=\frac{\tan x \sec ^{n-2} x}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x \quad(n \neq 1)$$

Check back soon!

Problem 51

Use Exercise 47 to find $\int(\ln x)^{3} d x$

Check back soon!

Problem 52

Use Exercise 48 to find $\int x^{4} e^{x} d x$

Check back soon!

Problem 53

$53-54$ Find the area of the region bounded by the given curves.
$$y=x e^{-0.4 x}, \quad y=0, \quad x=5$$

Check back soon!

Problem 54

$53-54$ Find the area of the region bounded by the given curves.
$$y=5 \ln x, \quad y=x \ln x$$

Check back soon!

Problem 56

$55-56$ Use a graph to find approximate $x$ -coordinates of the
points of intersection of the given curves. Then find (approxi-
mately) the area of the region bounded by the curves.
$$y=\arctan 3 x, \quad y=\frac{1}{2} x$$

Check back soon!

Problem 57

$57-60$ Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves
$$y=\cos (\pi x / 2), y=0,0 \leqslant x \leqslant 1 ; \quad \text about\quad the\quad y -axis$$

Check back soon!

Problem 58

$57-60$ Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves
$$y=e^{x}, y=e^{-x}, x=1 ; \quad \text { about the } y -axis$$

Check back soon!

Problem 59

$57-60$ Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves
$$y=e^{-x}, y=0, x=-1, x=0 ; \quad \text { about } x=1$$

Check back soon!

Problem 60

$57-60$ Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves
$$y=e^{x}, x=0, y=\pi ; \quad \text { about the } x-axis$$

Check back soon!

Problem 61

Find the average value of $f(x)=x^{2} \ln x$ on the interval $[1,3]$

Check back soon!

Problem 62

A rocket accelerates by burning its onboard fuel, so its mass
decreases with time. Suppose the initial mass of the rocket at
liftoff (including its fuel) is $m,$ the fuel is consumed at rate $r,$
and the exhaust gases are ejected with constant velocity $v_{e}$
(relative to the rocket). A model for the velocity of the rocket
at time $t$ is given by the equation
$$v(t)=-g t-v_{e} \ln \frac{m-r t}{m}$$
where $g$ is the acceleration due to gravity and $t$ is not too
large. If $g=9.8 \mathrm{m} / \mathrm{s}^{2}, m=30,000 \mathrm{kg}, r=160 \mathrm{kg} / \mathrm{s},$ and
$v_{e}=3000 \mathrm{m} / \mathrm{s}$ , find the height of the rocket one minute
after liftoff.

Check back soon!

Problem 63

A particle that moves along a straight line has velocity
$v(t)=t^{2} e^{-t}$ meters per second after $t$ seconds. How far will
it travel during the first $t$ seconds?

Check back soon!

Problem 64

If $f(0)=g(0)=0$ and $f^{\prime \prime}$ and $g^{\prime \prime}$ are continuous, show that
$$\int_{0}^{a} f(x) g^{\prime \prime}(x) d x=f(a) g^{\prime}(a)-f^{\prime}(a) g(a)+\int_{0}^{a} f^{\prime}(x) g(x) d x$$

Check back soon!

Problem 65

$\begin{array}{l}{\text { Suppose that } f(1)=2, f(4)=7, f^{\prime}(1)=5, f^{\prime}(4)=3, \text { and }} \\ {f^{\prime \prime} \text { is continuous. Find the value of } \int_{1}^{4} x f^{\prime \prime}(x) d x}\end{array}$

Check back soon!

Problem 66

(a) Use integration by parts to show that
$$\int f(x) d x=x f(x)-\int x f^{\prime}(x) d x$$
(b) If $f$ and $g$ are inverse functions and $f^{\prime}$ is continuous,
prove that
$$\int_{a}^{b} f(x) d x=b f(b)-a f(a)-\int_{f(a)}^{f(b)} g(y) d y$$
[Hint: Use part (a) and make the substitution $y=f(x) . ]$
(c) ln the case where $f$ and $g$ are positive functions and
$b>a>0,$ draw a diagram to give a geometric interpre-
tation of part (b).
(d) Use part (b) to evaluate $\int_{1}^{e} \ln x d x$

Check back soon!

Problem 67

We arrived at Formula $6.3 .2, V=\int_{a}^{b} 2 \pi x f(x) d x,$ by using
cylindrical shells, but now we can use integration by parts to
prove it using the slicing method of Section $6.2,$ at least for
he case where $f$ is one-to-one and therefore has an inverse
function $g .$ Use the figure to show that
$$V=\pi b^{2} d-\pi a^{2} c-\int_{c}^{d} \pi[g(y)]^{2} d y$$
Make the substitution $y=f(x)$ and then use integration by
parts on the resulting integral to prove that
$$V=\int_{a}^{b} 2 \pi x f(x) d x$$

Check back soon!

Problem 68

$\begin{array}{l}{\text { Let } I_{n}=\int_{0}^{\pi / 2} \sin ^{n} X d x} \\ {\text { (a) Show that } I_{2 n+2} \leqslant I_{2 n+1} \leqslant I_{2 n}} \\ {\text { (b) Use Exercise } 46 \text { to show that }}\end{array}$
$$\frac{I_{2 n+2}}{I_{2 n}}=\frac{2 n+1}{2 n+2}$$
(c) Use parts (a) and (b) to show that
$$\frac{2 n+1}{2 n+2} \leqslant \frac{L_{n+1}}{I_{2 n}} \leqslant 1$$
and deduce that $\lim _{n \rightarrow \infty} I_{2 n+1} / I_{2 n}=1$
(d) Use part $(\mathrm{c})$ and Exercises 45 and 46 to show that
$$\lim _{n \rightarrow \infty} \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \ldots \cdot \frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}=\frac{\pi}{2}$$
This formula is usually written as an infinite product:
$$\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots$$
and is called the Wallis product.