Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

  • Home
  • Textbooks
  • Calculus: Early Transcendentals
  • Techniques of Integration

Calculus: Early Transcendentals

James Stewart

Chapter 7

Techniques of Integration - all with Video Answers

Educators

+ 3 more educators

Section 1

Integration by Parts

03:06

Problem 1

Evaluate the integral using integration by parts with the indicated choices of $ u $ and $ dv $.

$ \displaystyle \int xe^{2x} $ ; $ u = x $ , $ dv = e^{2x} dx $

SL
Sky Li
Numerade Educator
03:51

Problem 2

Evaluate the integral using integration by parts with the indicated choices of $ u $ and $ dv $.

$ \displaystyle \int \sqrt{x} \ln x dx $ ; $ u = \displaystyle \ln x $ , $ dv = \sqrt{x} dx $

DQ
Danjoseph Quijada
Numerade Educator
01:08

Problem 3

Evaluate the integral.

$ \displaystyle \int x \cos 5x dx $

DQ
Danjoseph Quijada
Numerade Educator
02:52

Problem 4

Evaluate the integral.

$ \displaystyle \int ye^{0.2y} dy $

Mary Wakumoto
Mary Wakumoto
Numerade Educator
01:31

Problem 5

Evaluate the integral.

$ \displaystyle \int te^{-3t} dt $

DQ
Danjoseph Quijada
Numerade Educator
01:34

Problem 6

Evaluate the integral.

$ \displaystyle \int (x - 1) \sin \pi x dx $

DQ
Danjoseph Quijada
Numerade Educator
03:42

Problem 7

Evaluate the integral.

$ \displaystyle \int (x^2 + 2x) \cos x dx $

WZ
Wen Zheng
Numerade Educator
View

Problem 8

Evaluate the integral.

$ \displaystyle \int t^2 \sin \beta t dt $

Ma. Theresa  Alin
Ma. Theresa Alin
Numerade Educator
03:29

Problem 9

Evaluate the integral.

$ \displaystyle \int \cos^{-1} x dx $

WZ
Wen Zheng
Numerade Educator
02:02

Problem 10

Evaluate the integral.

$ \displaystyle \int \ln \sqrt{x} dx $

WZ
Wen Zheng
Numerade Educator
02:02

Problem 11

Evaluate the integral.

$ \displaystyle \int t^4 \ln t dt $

WZ
Wen Zheng
Numerade Educator
03:09

Problem 12

Evaluate the integral.

$ \displaystyle \int \tan^{-1} 2y dy $

WZ
Wen Zheng
Numerade Educator
03:05

Problem 13

Evaluate the integral.

$ \displaystyle \int t \csc^2 t dt $

WZ
Wen Zheng
Numerade Educator
02:52

Problem 14

Evaluate the integral.

$ \displaystyle \int x \cosh ax dx $

WZ
Wen Zheng
Numerade Educator
01:44

Problem 15

Evaluate the integral. $\int \frac{x-1}{x^{2}+2 x} d x$

Anthony Han
Anthony Han
Numerade Educator
03:22

Problem 16

Evaluate the integral.

$ \displaystyle \int \frac{z}{10^z} dz $

WZ
Wen Zheng
Numerade Educator
05:28

Problem 17

Evaluate the integral.

$ \displaystyle \int e^{2 \theta} \sin 3 \theta d \theta $

WZ
Wen Zheng
Numerade Educator
05:12

Problem 18

Evaluate the integral.

$ \displaystyle \int e^{-\theta} \cos 2 \theta d \theta $

WZ
Wen Zheng
Numerade Educator
04:10

Problem 19

Evaluate the integral.

$ \displaystyle \int z^3 e^z dz $

WZ
Wen Zheng
Numerade Educator
03:22

Problem 20

Evaluate the integral.

$ \displaystyle \int x \tan^2 x dx $

WZ
Wen Zheng
Numerade Educator
03:15

Problem 21

Evaluate the integral.

$ \displaystyle \int \frac{xe^{2x}}{(1 + 2x)^2} dx $

WZ
Wen Zheng
Numerade Educator
05:20

Problem 22

Evaluate the integral.

$ \displaystyle \int (\arcsin x)^2 dx $

WZ
Wen Zheng
Numerade Educator
02:43

Problem 23

Evaluate the integral.

$ \displaystyle \int_0^{\frac{1}{2}} x \cos \pi x dx $

WZ
Wen Zheng
Numerade Educator
05:25

Problem 24

Evaluate the integral.

$ \displaystyle \int_0^1 (x^2 + 1) e^{-x} dx $

WZ
Wen Zheng
Numerade Educator
07:31

Problem 25

Evaluate the integral.

$ \displaystyle \int_0^2 y \sinh y dy $

Willis James
Willis James
Numerade Educator
02:22

Problem 26

Evaluate the integral.

$ \displaystyle \int_1^2 w^2 \ln w dw $

Anthony Han
Anthony Han
Numerade Educator
03:04

Problem 27

Evaluate the integral.

$ \displaystyle \int_1^5 \frac{\ln R}{R^2} dR $

WZ
Wen Zheng
Numerade Educator
04:26

Problem 28

Evaluate the integral.

$ \displaystyle \int_0^{2 \pi} t^2 \sin 2t dt $

WZ
Wen Zheng
Numerade Educator
View

Problem 29

Evaluate the integral.

$ \displaystyle \int_0^\pi x \sin x \cos x dx $

Ma. Theresa  Alin
Ma. Theresa Alin
Numerade Educator
04:48

Problem 30

Evaluate the integral.

$ \displaystyle \int_1^{\sqrt{3}} \arctan (\frac{1}{x}) dx $

WZ
Wen Zheng
Numerade Educator
03:02

Problem 31

Evaluate the integral.

$ \displaystyle \int_1^5 \frac{M}{e^M} dM $

WZ
Wen Zheng
Numerade Educator
05:23

Problem 32

Evaluate the integral.

$ \displaystyle \int_1^2 \frac{(\ln x)^2}{x^3} dx $

WZ
Wen Zheng
Numerade Educator
02:45

Problem 33

Evaluate the integral.

$ \displaystyle \int_0^{\frac{\pi}{3}} \sin x \ln (\cos x) dx $

WZ
Wen Zheng
Numerade Educator
03:36

Problem 34

Evaluate the integral.

$ \displaystyle \int_0^1 \frac{r^3}{\sqrt{4 + r^2}} dr $

WZ
Wen Zheng
Numerade Educator
06:08

Problem 35

Evaluate the integral.

$ \displaystyle \int_1^2 x^4 (\ln x)^2 dx $

WZ
Wen Zheng
Numerade Educator
06:23

Problem 36

Evaluate the integral.

$ \displaystyle \int_0^t e^s \sin (t - s) ds $

WZ
Wen Zheng
Numerade Educator
02:15

Problem 37

First make a substitution and then use integration by parts to evaluate the integral.

$ \displaystyle \int e^{\sqrt{x}} dx $

WZ
Wen Zheng
Numerade Educator
06:16

Problem 38

First make a substitution and then use integration by parts to evaluate the integral.

$ \displaystyle \int \cos (\ln x) dx $

WZ
Wen Zheng
Numerade Educator
04:19

Problem 39

First make a substitution and then use integration by parts to evaluate the integral.

$ \displaystyle \int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\pi}} \theta^3 \cos (\theta^2) d \theta $

WZ
Wen Zheng
Numerade Educator
04:16

Problem 40

First make a substitution and then use integration by parts to evaluate the integral.

$ \displaystyle \int_0^\pi e^{\cos t} \sin 2t dt $

WZ
Wen Zheng
Numerade Educator
03:32

Problem 41

First make a substitution and then use integration by parts to evaluate the integral.

$ \displaystyle \int x \ln (1 + x) dx $

WZ
Wen Zheng
Numerade Educator
03:50

Problem 42

First make a substitution and then use integration by parts to evaluate the integral.

$ \displaystyle \int \frac{\arcsin (\ln x)}{x} dx $

WZ
Wen Zheng
Numerade Educator
04:23

Problem 43

Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int xe^{-2x} dx $

WZ
Wen Zheng
Numerade Educator
04:11

Problem 44

Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int x^{\frac{3}{2}} \ln x dx $

WZ
Wen Zheng
Numerade Educator
04:30

Problem 45

Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int x^3 \sqrt{1 + x^2} dx $

WZ
Wen Zheng
Numerade Educator
04:43

Problem 46

Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the function and its antiderivative (take $ C = 0 $).

$ \displaystyle \int x^2 \sin 2x dx $

WZ
Wen Zheng
Numerade Educator
09:56

Problem 47

(a) Use the reduction formula in Example 6 to show that
$$ \int \sin^2 x dx = \frac{x}{2} - \frac{\sin 2x}{4} + C $$
(b) Use part (a) and the reduction formula to evaluate $ \displaystyle \int \sin^4 x dx $.

Willis James
Willis James
Numerade Educator
08:10

Problem 48

(a) Prove the reduction formula
$$ \int \cos^n x dx = \frac{1}{n} \cos^{n - 1} x \sin x + \frac{n - 1}{n} \int \cos^{n - 2} x dx $$
(b) Use part (a) to evaluate $ \displaystyle \int \cos^2 x dx $.
(c) Use parts (a) and (b) to evaluate $ \displaystyle \int \cos^4 x dx $.

Carson Merrill
Carson Merrill
Numerade Educator
08:52

Problem 49

(a) Use the reduction formula in Example 6 to show that
$$ \int_0^{\frac{\pi}{2}} \sin^n x dx = \frac{n - 1}{n} \int_0^{\frac{\pi}{2}} \sin^{n - 2} x dx $$
where $ n \ge 2 $ is an integer.
(b) Use part (a) to evaluate $ \displaystyle \int_0^{\frac{\pi}{2}} \sin^3 x dx $ and $ \displaystyle \int_0^{\frac{\pi}{2}} \sin^5 x dx $.
(c) Use part (a) to show that, for odd powers of sine,
$$ \int_0^{\frac{\pi}{2}} \sin^{2n + 1} x dx = \frac{2 \cdot 4 \cdot 6 \cdots \cdots 2n}{3 \cdot 5 \cdot 7 \cdots \cdots (2n +1)} $$

Willis James
Willis James
Numerade Educator
03:09

Problem 50

Prove that, for even powers of sine,
$$ \int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \frac{1 \cdot 3 \cdot 5 \cdots \cdots (2n - 1)}{2 \cdot 4 \cdot 6 \cdots \cdots 2n} \frac{\pi}{2} $$

WZ
Wen Zheng
Numerade Educator
02:01

Problem 51

Use integration by parts to prove the reduction formula.

$ \displaystyle \int (\ln x)^n dx = x (\ln x)^n - n \displaystyle \int (\ln x)^{n - 1} dx $

WZ
Wen Zheng
Numerade Educator
01:53

Problem 52

Use integration by parts to prove the reduction formula.

$ \displaystyle \int x^n e^x dx = x^n e^x - n \displaystyle \int x^{n - 1} e^x dx $

WZ
Wen Zheng
Numerade Educator
02:48

Problem 53

Use integration by parts to prove the reduction formula.

$ \displaystyle \int \tan^n x dx = \frac{\tan^{n -1} x}{n - 1} - \displaystyle \int \tan^{n -2} x dx (n \neq 1) $

WZ
Wen Zheng
Numerade Educator
04:40

Problem 54

Use integration by parts to prove the reduction formula.

$ \displaystyle \int \sec^n x dx = \frac{\tan x \sec^{n - 2} x}{n - 1} + \frac{n - 2}{n - 1} \displaystyle \int \sec^{n - 2} x dx (n \neq 1) $

WZ
Wen Zheng
Numerade Educator
03:04

Problem 55

Use Exercise 51 to find $ \displaystyle \int (\ln x)^3 dx $.

WZ
Wen Zheng
Numerade Educator
02:59

Problem 56

Use Exercise 52 to find $ \displaystyle \int x^4 e^x dx $.

WZ
Wen Zheng
Numerade Educator
04:14

Problem 57

Find the area of the region bounded by the given curves.

$ y = x^2 \ln x $ , $ y = 4 \ln x $

WZ
Wen Zheng
Numerade Educator
05:52

Problem 58

Find the area of the region bounded by the given curves.

$ y = x^2 e^{-x} $ , $ y = xe^{-x} $

WZ
Wen Zheng
Numerade Educator
05:54

Problem 59

Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves.

$ y = \arcsin \left(\frac{1}{2} x \right) $, $ y = 2 - x^2 $

WZ
Wen Zheng
Numerade Educator
05:05

Problem 60

Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves.

$ y = x \ln (x + 1) $ , $ y = 3x - x^2 $

WZ
Wen Zheng
Numerade Educator
04:24

Problem 61

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves about the given axis.

$ y = \cos (\frac{\pi x}{2}) $ , $ y = 0 $ , $ 0 \le x \le 1 $ ; about the y-axis

WZ
Wen Zheng
Numerade Educator
03:07

Problem 62

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves about the given axis.

$ y = e^x $ , $ y = e^{-x} $ , $ x = 1 $ ; about the y-axis

WZ
Wen Zheng
Numerade Educator
04:20

Problem 63

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves about the given axis.

$ y = e^{-x} $ , $ y = 0 $ , $ x = -1 $ , $ x = 0 $ ; about $ x = 1 $

WZ
Wen Zheng
Numerade Educator
04:07

Problem 64

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves about the given axis.

$ y = e^x $ , $ x = 0 $ , $ y = 3 $ ; about the x-axis

WZ
Wen Zheng
Numerade Educator
05:56

Problem 65

Calculate the volume generated by rotating the region bounded by the curves $ y = \ln x $, $ y = 0 $ and $ x = 2 $ about each axis.
(a) The y-axis
(b) The x-axis

WZ
Wen Zheng
Numerade Educator
03:46

Problem 66

Calculate the average value of $ f(x) = x \sec^2 x $ on the interval $ [0, \frac{\pi}{4}] $.

WZ
Wen Zheng
Numerade Educator
03:49

Problem 67

The Fresnel function $ S(x) = \displaystyle \int_0^x \sin \left(\frac{1}{2} \pi t^2 \right) dt $ was discussed in Example 5.3.3 and is used extensively in the theory of optics. Find $ S(x) dx $. [Your answer will involve $ S(x) $.]

Carson Merrill
Carson Merrill
Numerade Educator
03:25

Problem 68

A rocket accelerates by burning its onboard fuel, so its mass decreases with time. Suppose the initial mass of the rocket at liftoff (including its fuel) is $ m $, the fuel is consumed at rate $ r $, and the exhaust gases are ejected with constant velocity $ v_e $ (relative to the rocket). A model for the velocity of the rocket at time $ t $ is given by the equation
$$ v(t) = -gt - v_e \ln \frac{m - rt}{m} $$
where $ g $ is the acceleration due to gravity and t is not too large. If $ g = 9.8 m/s^2 $, $ m = 30,000 kg $, $ r = 160 kg/s $, and $ v_e = 3000 m/s $, find the height of the rocket one minute after liftoff.

Carson Merrill
Carson Merrill
Numerade Educator
04:28

Problem 69

A particle that moves along a straight line has velocity $ v(t) = t^2 e^{-t} $ meters per second after $ t $ seconds. How far will it travel during the first $ t $ seconds?

WZ
Wen Zheng
Numerade Educator
04:10

Problem 70

If $ f(0) = g(0) = 0 $ and $ f^n $ and $ g^n $ are continuous, show that
$$ \int_0^a f(x) g^{\prime\prime} (x) dx = f(a)g^\prime(a) - f^\prime(a)g(a) + \int_0^a f^{\prime\prime} (x) g(x) dx $$

WZ
Wen Zheng
Numerade Educator
View

Problem 71

Suppose that $ f(1) = 2 $, $ f(4) = 7 $, $ f^\prime(1) = 5 $, $ f^\prime(4) = 3 $ and $ f^{\prime\prime} $ is continuous. Find the value of $ \displaystyle \int_1^4 x f^{\prime\prime} (x)\ dx $.

Ma. Theresa  Alin
Ma. Theresa Alin
Numerade Educator
08:21

Problem 72

(a) Use integration by parts to show that
$$ \int f(x) dx = xf (x) - \int xf^\prime (x) dx $$
(b) If $ f $ and $ g $ are inverse functions and $ f^\prime $ is continuous, prove that
$$ \int_a^b f(x) dx = bf (b) - af (a) - \int_{f(a)}^{f(b)} g(y) dy $$
[Hint: Use part (a) and make the substitution $ y = f(x) $.]
(c) In the case where $ f $ and $ g $ are positive functions and $ b > a > 0 $, draw a diagram to give a geometric interpretation of part (b).
(d) Use part (b) to evaluate $ \displaystyle \int_1^e \ln x dx $.

WZ
Wen Zheng
Numerade Educator
06:52

Problem 73

We arrived at Formula 6.3.2, $ V = \displaystyle \int_a^b 2 \pi x f(x) dx $, by using cylindrical shells, but now we can use integration by parts to prove it using the slicing method of Section 6.2, at least for the case where $ f $ is one-to-one and therefore has an inverse function $ g $. Use the figure to show that
$$ V = \pi b^2 d - \pi a^2 c - \int_c^d \pi [g(y)]^2 dy $$
Make the substitution $ y = f(x) $ and then use integration by parts on the resulting integral to prove that
$$ V = \int_a^b 2 \pi x f(x) dx $$

WZ
Wen Zheng
Numerade Educator
10:10

Problem 74

Let $ I_n = \displaystyle \int_0^{\frac{\pi}{2}} \sin^n x dx $.
(a) Show that $ I_{2n + 2} \le I_{2n + 1} \le I_{2n} $.
(b) Use Exercise 50 to show that
$$ \frac{I_{2n + 2}}{I_{2n}} = \frac{2n + 1}{2n + 2} $$
(c) Use parts (a) and (b) to show that
$$ \frac{2n + 1}{2n + 2} \le \frac{I_{2n + 1}}{I_{2n}} \le 1 $$
and deduce that $ \lim_{n\to\infty}\frac{I_{2n + 1}}{I_{2n}} = 1 $.
(d) Use part (c) and Exercises 49 and 50 to show that
$$ \lim_{n\to\infty} \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots \cdots \frac{2n}{2n - 1} \cdot \frac{2n}{2n + 1} = \frac{\pi}{2} $$
This formula is usually written as an infinite product:
$$ \frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots $$
and is called the Wallis product.
(e) We construct rectangles as follows. Start with a square of area 1 and attach rectangles of area 1 alternately beside or on top of the previous rectangle (see the figure). Find the limit of the ratios of width to height of these rectangles.

WZ
Wen Zheng
Numerade Educator

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started