Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

  • Home
  • Textbooks
  • Calculus: Early Transcendentals
  • Techniques of Integration

Calculus: Early Transcendentals

James Stewart

Chapter 7

Techniques of Integration - all with Video Answers

Educators

+ 3 more educators

Section 6

Integration Using Tables and Computer Algebra Systems

03:07

Problem 1

Use the indicated entry in the Table of Integrals on the Reference Pages to evaluate the integral.

$ \displaystyle \int_0^{\frac{\pi}{2}} \cos 5x \cos 2x\ dx $ ; entry 80

Foster Wisusik
Foster Wisusik
Numerade Educator
01:53

Problem 2

Use the indicated entry in the Table of Integrals on the Reference Pages to evaluate the integral.

$ \displaystyle \int_0^1 \sqrt{x - x^2}\ dx $ ; entry 113

Foster Wisusik
Foster Wisusik
Numerade Educator
04:18

Problem 3

Use the indicated entry in the Table of Integrals on the Reference Pages to evaluate the integral.

$ \displaystyle \int_1^2 \sqrt{4x^2 - 3}\ dx $ ; entry 39

Foster Wisusik
Foster Wisusik
Numerade Educator
05:08

Problem 4

Use the indicated entry in the Table of Integrals on the Reference Pages to evaluate the integral.

$ \displaystyle \int_0^1 \tan^3 \left (\frac{\pi x}{6} \right)\ dx $ ; entry 69

Foster Wisusik
Foster Wisusik
Numerade Educator
04:04

Problem 5

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int_0^{\frac{\pi}{8}} \arctan 2x\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:42

Problem 6

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int_0^2 x^2 \sqrt{4 - x^2}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:23

Problem 7

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\cos x}{\sin^2 x - 9}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
03:42

Problem 8

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{e^x}{4 - e^{2x}}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
04:01

Problem 9

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\sqrt{9x^2 + 4}}{x^2}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
04:31

Problem 10

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\sqrt{2y^2 - 3}}{y^2}\ dy $

Foster Wisusik
Foster Wisusik
Numerade Educator
05:30

Problem 11

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int_0^\pi \cos^6 \theta\ d \theta $

Foster Wisusik
Foster Wisusik
Numerade Educator
03:15

Problem 12

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int x \sqrt{2 + x^4}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:06

Problem 13

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\arctan \sqrt{x}}{\sqrt{x}}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
03:56

Problem 14

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int_0^{\pi} x^3 \sin x\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
01:57

Problem 15

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\coth \frac{1}{y}}{y^2}\ dy $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:04

Problem 16

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{e^{3t}}{\sqrt{e^{2t} - 1}}\ dt $

Foster Wisusik
Foster Wisusik
Numerade Educator
06:29

Problem 17

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int y \sqrt{6 + 4y -4y^2}\ dy $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:47

Problem 18

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{dx}{2x^3 - 3x^2} $

Foster Wisusik
Foster Wisusik
Numerade Educator
03:20

Problem 19

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \sin^2 x \cos x \ln (\sin x)\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
03:19

Problem 20

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\sin 2 \theta}{\sqrt{5 - \sin \theta}}\ d \theta $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:30

Problem 21

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{e^x}{3 - e^{2x}}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
05:43

Problem 22

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int_0^2 x^3 \sqrt{4x^2 - x^4}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
04:07

Problem 23

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \sec^5 x\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:43

Problem 24

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int x^3 \arcsin (x^2)\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:48

Problem 25

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\sqrt{4 + (\ln x)^2}}{x}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
04:09

Problem 26

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int_0^1 x^4 e^{-x}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:17

Problem 27

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\cos^{-1} (x^{-2})}{x^3}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:26

Problem 28

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{dx}{\sqrt{1 - e^{2x}}} $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:40

Problem 29

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \sqrt{e^{2x} - 1}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
03:47

Problem 30

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int e^t \sin (\alpha t - 3)\ dt $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:06

Problem 31

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{x^4\ dx}{\sqrt{x^{10} - 2}} $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:33

Problem 32

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\sec^2 \theta \tan^2 \theta}{\sqrt{9 - \tan^2 \theta}}\ d \theta $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:53

Problem 33

The region under the curve $ y = \sin^2 x $ from 0 to $ \pi $ is rotated about the x-axis. Find the volume of the resulting solid.

Foster Wisusik
Foster Wisusik
Numerade Educator
03:20

Problem 34

Find the volume of the solid obtained when the region under the curve $ y = \arcsin x $, $ x \ge 0 $, is rotated about the y-axis.

Foster Wisusik
Foster Wisusik
Numerade Educator
04:17

Problem 35

Verify Formula 53 in the Table of Integrals (a) by differentiation and (b) by using the substitution $ t = a + bu $.

Foster Wisusik
Foster Wisusik
Numerade Educator
07:58

Problem 36

Verify Formula 31 (a) by differentiation and (b) by substituting $ u = a \sin \theta $.

Foster Wisusik
Foster Wisusik
Numerade Educator
04:20

Problem 37

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int \sec^4 x\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:16

Problem 38

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int \csc^5 x\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:33

Problem 39

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int x^2 \sqrt{x^2 + 4}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
01:18

Problem 40

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int \frac{dx}{e^x (3e^x + 2)} $

Foster Wisusik
Foster Wisusik
Numerade Educator
06:31

Problem 41

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int \cos^4 x\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
01:47

Problem 42

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int x^2 \sqrt{1 - x^2}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
02:05

Problem 43

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int \tan^5 x\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
01:41

Problem 44

Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.

$ \displaystyle \int \frac{1}{\sqrt{1 + \sqrt[3]{x}}}\ dx $

Foster Wisusik
Foster Wisusik
Numerade Educator
04:25

Problem 45

Use the table of integrals to evaluate $ F(x) = \int f(x)\ dx $, where
$$ f(x) = \frac{1}{x \sqrt{1 - x^2}} $$
What is the domain of $ f $ and $ F $?
(b) Use a $ CAS $ to evaluate $ F(x) $. What is the domain of the function $ F $ that the $ CAS $ produces? Is there a discrepancy between this domain and the domain of the function $ F $ that you found in part (a)?

Foster Wisusik
Foster Wisusik
Numerade Educator
03:35

Problem 46

Computer algebra systems sometimes need a helping hand from human beings. Try to evaluate
$$ \int (1 + \ln x) \sqrt{1 + (x \ln x)^2}\ dx $$
with a computer algebra system. If it doesn't return an answer, make a substitution that changes the integral into one that the $ CAS $ can evaluate.

Foster Wisusik
Foster Wisusik
Numerade Educator

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started