Draw the graph of $F(x, y)$ and the graph of the plane tangent to the graph of $F$ at the point $(\mathrm{a}, \mathrm{b})$. A MATLAB program to solve $\mathrm{c}$. is shown in the answer to this exercise, Exercise 13.1.7.
a. $F(x, y)=0.5 x+y+1 \quad(a, b)=(0.5,1)$
b. $\quad F(x, y)=\left(x^{2}-y^{2}\right) / 2 \quad(a, b)=(1,1)$
c. $F(x, y)=\left(x^{2}+y^{2}\right) / 2 \quad(a, b)=(1,0.5)$
d. $F(x, y)=e^{x y / 2} \quad(a, b)=(1,0.2)$
e. $F(x, y)=\sqrt{9-x^{2}-y^{2}} \quad(a, b)=(1,0.2)$
f. $\quad F(x, y)=4-x^{2}-y^{2} \quad(a, b)=(1,0.2)$
g. $\quad F(x, y)=2 /\left(1+x^{2}+y^{2}\right) \quad(a, b)=(1,1)$
h. $\quad F(x, y)=e^{-x^{2}-y^{2}}=e^{-x^{2}} e^{-y^{2}} \quad(a, b)=(1,0.5)$