$[\mathbf{M}]$ Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $K=\operatorname{Span}\left\{\mathbf{v}_{3}, \mathbf{v}_{4}\right\},$ where
$$
\mathbf{v}_{1}=\left[\begin{array}{l}{5} \\ {3} \\ {8}\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}{1} \\ {3} \\ {4}\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}{2} \\ {-1} \\ {5}\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{r}{0} \\ {-12} \\ {-28}\end{array}\right]
$$
Then $H$ and $K$ are subspaces of $\mathbb{R}^{3} .$ In fact, $H$ and $K$ are planes in $\mathbb{R}^{3}$ through the origin, and they intersect in a line through $0 .$ Find a nonzero vector $\mathbf{w}$ that generates that line. [Hine. [Hint: $\mathbf{w}$ can be written as $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$