Exercises $23-26$ concern a vector space $V,$ a basis $\mathcal{B}=$ $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\},$ and the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$
Show that a subset $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \quad$ in $V$ is linearly
independent if and only if the set of coordinate vectors $\left\{\left[\mathbf{u}_{1}\right]_{\mathcal{B}}, \ldots,\left[\mathbf{u}_{p}\right]_{\mathcal{B}}\right\}$ is linearly independent in $\mathbb{R}^{n} .[\text { Hint: }$ since the coordinate mapping is one-to-one, the following equations have the same solutions, $c_{1}, \ldots, c_{p} . ]$