ðŸ’¬ ðŸ‘‹ Weâ€™re always here. Join our Discord to connect with other students 24/7, any time, night or day.Join Here!

Like

Report

No Related Subtopics

University of Washington

University of Sheffield

McMaster University

04:27

Kai C.

(I) A 110-kg tackler moving at 2.5 ms meets head-on (and holds on to) an 82-kg halfback moving at 5.0 m/s. What will be their mutual speed immediately after the collision?

07:43

Kathleen T.

(II) A person has a reasonable chance of surviving an automobile crash if the deceleration is no more than 30 $g$'s. Calculate the force on a 65-kg person accelerating at this rate.What distance is traveled if brought to rest at this rate from 95 km/h?

00:39

Averell H.

I) How much tension must a rope withstand if it is used to accelerate a 1210-kg car horizontally along a frictionless surface at 1.20 m/s$^2$ ?

04:39

Muhammed S.

(I) A 7150-kg railroad car travels alone on a level frictionless track with a constant speed of 15.0 m/s. A 3350-kg load, initially at rest, is dropped onto the car. What will be the car's new speed?

Create your own quiz or take a quiz that has been automatically generated based on what you have been learning. Expose yourself to new questions and test your abilities with different levels of difficulty.

Create your own quiz

welcome to our second video on Newton's laws and this video. We're going to address an issue that really needs to be talked about before we go any farther. And that is the issue of Mass versus wait, which are two different things. And now you may have thought when I was talking about inertia before and I said, Well, all matter has this you're thinking, Oh, well, it it's how big you are, how much you weigh. No, it's actually literally how much mass you have, which is different from wait. Uh, remember in Newton's second Law, we said some of forces over this thing M which I called Mass, is equal to acceleration. Or if I reorganize this, the net force, which is the same thing, is the sum of forces is equal to mass times acceleration Here. Now let's think about what this in place, for example, for an object in free fall on object in free fall has an acceleration due to gravity that is G. So then we'd say F net is equal to M G, which means the force at which the force with which gravity is pulling on everybody and everything is equal to the mass of everybody or everything multiplied by the acceleration due to gravity wherever you happen to be standing, which, if we're on the planet earth near the surface, it's approximately 9.8 m per second squared. So this is a force. This force is equal to mass times gravity. If you think about what happens when you stand on a scale, you are literally being pulled down onto the scale by the force of gravity of the earth. So if we draw on Earth here with the scale and you stand on the scale, what's happening is the Earth is attempting to pull you in. But because there's something underneath you, it stops you from going down, and a scale just happens to be a meter that can tell you exactly how hard you're being pulled down. So a scale reads. Wait, it does not read mass unless it has some special math inside. So we have F net equals M. Times C. This is a weight. In other words, a weight is a force, but it is not a mass. A weight is equal to a mass times acceleration due to gravity. This is a really important point that we're going to come across again and again if we think about this in terms of what it looks like in a free body diagram. We know, for example, if we have ah, box on the floor has we've been considering In the last couple videos we have a box on the floor and we have a force of gravity that's pulling it down. Generally speaking, when I draw in a picture like this, I'll show the force of gravity applied to the center of mass of the object or approximately the middle of the object. But then it's not accelerating down, which means that the net force in the Y direction must be zero must be equal to zero. Newtons are the units we use here. Notice that we have mass times acceleration which is going to be equal to R S I unit from mass which is kilogram times meters per second squared. No one wants to stay kilograms meters per second squared all the time. So we call that a Newton for which we have a capital n. So we have our units when we say that we have zero force zero net force in the Y direction, which means that there has to be a secondary force pushing it up here. This is the force due to the floor, which we will name in a little bit, a little more more precisely than force due to floor. But forced to the floor has to be equal to this forced down. Now this force down is not mass. This is Wait. So the force of the floor pushing back on you has to be equal to your weight. We're going to examine this a little more closely as we talk about Newton's third law. But I wanted to bring up here. And now that mass times gravity is your weight, while just mass is the variable em there different things. And we need to make sure that we're keeping track of that as we continue drawing are free body diagrams.

Applying Newton's Laws

Work

Kinetic Energy

Potential Energy

Equilibrium and Elasticity

04:51

10:03

05:00

04:47

04:44

04:56

01:55

04:40

03:36

04:50

05:01