ðŸ’¬ ðŸ‘‹ Weâ€™re always here. Join our Discord to connect with other students 24/7, any time, night or day.Join Here!

Like

Report

No Related Subtopics

Cornell University

University of Michigan - Ann Arbor

University of Washington

Simon Fraser University

0:00

Muhammed S.

(I) A 7150-kg railroad car travels alone on a level frictionless track with a constant speed of 15.0 m/s. A 3350-kg load, initially at rest, is dropped onto the car. What will be the car's new speed?

00:39

Averell H.

I) How much tension must a rope withstand if it is used to accelerate a 1210-kg car horizontally along a frictionless surface at 1.20 m/s$^2$ ?

00:56

Donald A.

03:04

Kai C.

Create your own quiz or take a quiz that has been automatically generated based on what you have been learning. Expose yourself to new questions and test your abilities with different levels of difficulty.

Create your own quiz

welcome to our first example Video Will investigating normal forces. In this video, we'll consider one of the most common problems in introductory physics, which involves you riding in an elevator with a scale beneath your feet. Okay, so we did this before in a previous video. So let's review really quickly when we draw our free body diagram for you. There are two forces on you. There's the force due to gravity. And then there's the force due to the scale, which is actually a normal force due to the scale. Okay. And that is the force essentially, that the scale is reading. Now this is going to be influenced by the motion of the elevator in particular. If it is accelerating up or accelerating down, then we will need to take that into account. Because when we write this, we say okay, have to forces fn minus F G. Because F G is going down. FN is going up. That's going to be equal to the mass of you times your acceleration which will match the acceleration of the elevator. Hopefully. So, looking at this, then if I wanted to solve for the force of the scale, the normal force here that would be equal to F G plus mass times acceleration. If we're accelerating up notice, that means the force of the scale will actually be greater than your normal weight than your normal F g here. But if we're accelerating down than the normal force of the scale on you or the force of the scale, that is, reading is going to be less than because we'll have a negative second term instead of a positive second term. So the right hand side will be smaller than your normal weight. So we could also rewrite this because F G is equal to M G. We could write. This is equal to mass time.

Applying Newton's Laws

Work

Kinetic Energy

Potential Energy

Equilibrium and Elasticity

04:40

03:36

04:50

05:01