Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the exact area of the region under the graph…

03:53

Question

Answered step-by-step

Problem 29 Easy Difficulty

(a) Express the area under the curve $ y = x^5 $ from 0 to 2 as a limit.

(b) Use a computer algebra system to find the sum in your expression from part (a).

(c) Evaluate the limit in part (a).


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Robert Daugherty
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Robert Daugherty

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:08

Frank Lin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 1

Areas and Distances

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

04:28

(a) Express the area under…

04:36

Express the area under the…

04:33

(a) Evaluate the area unde…

04:19

(a) Evaluate the area unde…

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32

Video Transcript

So the problem 29 they give us a function f. of X. is X to the 5th. We know that that curve lies above the X. Axis. So we're asked to find, Hey express as a limit the um area under the curve from 0-2. So to express this as a limit and a some. So what's going to happen is you're gonna divide this up into rectangles. So as you divide it up into rectangles, you're trying to approach an infinite number of rectangles. So in is the number of rectangles. So we're gonna let that go to and finish. You're gonna have the limit as in approaches infinity. And now we're going to have to sum up the areas of all the rectangles. So I'm gonna pick another variable over my indexing. I equal. Okay. And then I've got in rectangle so I'm gonna count them from one to end. Okay. And now the height of those rectangles. Okay. If I use the right some then as I go from 0 to 2, what is the distance from 0 to 2? That's two minus zero divided by in is to over in. So each of these rectangles has to be a width of two over in to make this work. So the width of the rectangle is too over in. Okay. And then the height of the rectangle is to be determined by this function X to the 5th. So the first rectangle, if I take the right side, that is going to be when at the first rectangle. So it's going to be i times what to over in to the fifth power. So that first value is one times two over, in, the next rectangle is at two times two are in three and then all the way up to end. So this is the sum that needs to happen. So this is a limit infinite some uh value of the area under that curve. So now what they said to do is to use uh computer algebra system to evaluate um this some okay so let's just go to that and figure that out. So it's going to be the sum. So we're going to say the some Mhm. From I equal 1 2 n. of two over N times I time is too over in Raised to the 5th power and you see what I come up with there. So this is 16 N plus one squared. So this is equal equal to 16 In plus one squared. And then I had a quadratic term too two in -1. So to n squared plus two in minus one Divided by and that was three into the 4th, so three in to the fourth. So this is just, pardon me, the the this is just the thumb part. Okay, so what you're seeing here is that is just the sum part. Okay, so now what we want to do is want to take that some and we want to take the um the limit of that. So now I need to figure out what is the limit as N approaches infinity? Okay. Of 16 N plus one squared. Mhm two in squared. Okay Plus two in -1 over. I'm gonna write this as three times in squared times in square to help me with this limit, that's three into the fourth. So this is going to be the limit as in approaches infinity 16/3. Now that first term is going to be N plus one over in squared Ok, And then the next one is going to be mhm to N squared? Yeah Plus two in -1 over in squared. And now you look as n goes to infinity, then this term is going to go to zero. This term is going to go to zero. This term is just going to go to two. This term will go to zero. This term will go to one. So this limit is going to evaluate to The value of 32 over three. So that is the exact area of the curve from 0 to 2 of extra the fifth. And we found that by writing this as a sum and a limit. We used our computer algebra system to figure out what the value of the sum was. And then we just used our own Strengthen and recognition of algebra and limits to figure out that the limit was 32/3.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
71
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
49
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

04:28

(a) Express the area under the curve $y=x^{4}+5 x^{2}+x$ from 2 to 7 as a limit…

04:36

Express the area under the curve y=x5 from 0 to 2 as a limit. Evaluate the limi…

04:33

(a) Evaluate the area under the curve $y=5 . e^{x}$ between $x=0$ and $x=3$. (b…

04:19

(a) Evaluate the area under the curve $y=5 . e^{x}$ between $x=0$ and $x=3$. (b…
Additional Mathematics Questions

01:00

Solve : 6 yards 9 feet 4 inches times 2

01:52

f = 0.9 Hz and v = 154.9 cm/s

02:22

Cell phone plan A costs $52 a month plus a charge of $0.80 per text. Cell p…

01:01

What is the value of 3.5 (11) + 1.9 (11) + 1.6 (11)
40
77
4,096
…

01:41

A meteorologist finds that the temperature at the 6000-foot level of a mount…

03:38

SCATTER PLOTS AND TREND LINES
In 1-4, match each scatter plot to the equa…

04:18

calculators are sold to students for $20 each. 300 students are willing to b…

01:08

C=25
S= 9
b = 4c- s2
b= ?

01:18

A map has a scale of 2 inches : 25 miles. Gabriel uses the map to find the

01:48

Johnny Rockefeller had a bad credit rating and went to a local cash center. …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started