Download the App!
Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.
Question
Answered step-by-step
(a) Find a number $ \delta $ such that if $ | x - 2 | < \delta $, then $ | 4x - 8 | < \varepsilon $, where $ \varepsilon = 0.1 $.
(b) Repeat part (a) with $ \varepsilon = 0.01 $.
Video Answer
Solved by verified expert
This problem has been solved!
Try Numerade free for 7 days
Like
Report
Official textbook answer
Video by Oswaldo Jiménez
Numerade Educator
This textbook answer is only visible when subscribed! Please subscribe to view the answer
01:46
Daniel Jaimes
Calculus 1 / AB
Chapter 2
Limits and Derivatives
Section 4
The Precise Definition of a Limit
Limits
Derivatives
Missouri State University
Campbell University
Oregon State University
Boston College
Lectures
04:40
In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.
In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.
0:00
(a) Find a number $ \delta…
01:31
Finding a $\delta$ for a G…
02:01
01:44
01:52
03:24
03:57
Finding $\delta$ for a giv…
03:27
Gives a function $f(x)$, a…
05:40
01:17
04:04
Let $f(x)=\frac{2 x^{2}-2}…
in part A. We are going to find a number delta positive. Such that if the absolute value of x minus two is less than delta then the absolute value of forex minor cities lesson excellent We're absolutely is equal to 0.1. In part B. We repeat what we have done in part A With absolutely equal 0.01. And in fact we are going to do that in general. That is we're going to solve the problem for any value of absence. And what we want to prove here is that we choose at delta in terms of excellent search that this implication here is true, that is absolute value affects ministerial lists and delta will imply that automatically for a cell value for x minus eight is less than absent. So the idea is to choose at delta in terms of absolute um such that these implications here is always true and to do that, we analyze this inequality here. So we start with this After the value of four X -8. We know that this is the actual value of four times X -2 is high parenthesis and the absolute value of the product is the product of the absolute values that this is the absolute value of four times The absolute value of expense to the absolute value of four is 4. So we get four times the absolute value affects -2. And if we had that X managed to in absolute values less than delta then this will be less than for delta. So to have the this expression here which is equal to this chain here. Up to here less than this value And what is going to be Absolutely We just had to take for delta conceptual um or equivalently Delta equals absolute over four. Yeah, so that's the choice we had taken off delta in terms of Excellent. So let's say that this is the way we arrived to the form of delta in terms of Excellent. Where we got to do it. Oh the proof that this is the right choice. We got to do it in a straight way. That is we say like this given positive Absolutely. We take Delta equals absolute over four. Okay then if absolute value affects minus seriously and Delta then The absolute value for X -8 which we have proved already that is equal to four absolute value of x minus delta, X -2. Sorry and x minus choose we're supposed to just listen in absolute value is and delta. So this is lesson for delta and now we say that we have chosen delta this way. So we get this is four times absolutely over four which is absent. So we approved that if this is true Then it's true that this quantity of sort of value for X -8 is less than absolutely. So it's a value for X men S A. Is less than absent. So it means that for any given positive. Absolutely. That's the way to choose delta. And with that election of the value of Delta in terms of Absalom we always have that This inequality implies this other inequality. So we we have proved with this in general that this is the case. That is any value of absolute. We are given, we only have to do this calculation absolute fourth. So For absolutely equal in for a 0.1 we have two shoes, Delta equal absolute 4th equal 0.1 over four. And that is 0.025. And this far A And for absolutely equal 0.01. We have two shoes, Delta equals absolute over four equals 0.01/4. And that's equal to yeah, 0.00 whose life. And that's far be sorry, that's harvey. So we have solved the problem in general. 1st like this and having done the general calculation then we do the particular calculations by putting the values of accident and calculating the violence of correspondent melissa, Delta. Okay. And we uh in some way are talking about the fact that the X goes to two. If X is close to the value to then for expense, for X is close to the value eight, which is true, which is something we can intuitively see that is true.
View More Answers From This Book
Find Another Textbook