Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find symmetric equations for the line of intersec…

06:56

Question

Answered step-by-step

Problem 58 Hard Difficulty

(a) Find parametric equations for the line of intersection of the planes and (b) find the angle between the planes.

$ 3x - 2y + z =1 $ , $ 2x + y - 3z = 3 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

SB
Sriparna Bhattacharjee
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Sriparna Bhattacharjee

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

04:19

WZ

Wen Zheng

Related Courses

Calculus 3

Calculus: Early Transcendentals

Chapter 12

Vectors and the Geometry of Space

Section 5

Equations of Lines and Planes

Related Topics

Vectors

Discussion

You must be signed in to discuss.
Top Calculus 3 Educators
Lily An

Johns Hopkins University

Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Joseph Lentino

Boston College

Calculus 3 Courses

Lectures

Video Thumbnail

02:56

Vectors Intro

In mathematics, a vector (from the Latin word "vehere" meaning "to carry") is a geometric entity that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. Vectors play an important role in physics, engineering, and mathematics.

Video Thumbnail

11:08

Vector Basics Overview

In mathematics, a vector (from the Latin word "vehere" which means "to carry") is a geometric object that has a magnitude (or length) and direction. A vector can be thought of as an arrow in Euclidean space, drawn from the origin of the space to a point, and denoted by a letter. The magnitude of the vector is the distance from the origin to the point, and the direction is the angle between the direction of the vector and the axis, measured counterclockwise.

Join Course
Recommended Videos

10:29

(a) Find parametric equati…

04:38

Find the parametric and sy…

09:13

Determine parametric equat…

03:16

Find parametric equations …

02:51

Find parametric equations …

02:25

Find parametric equations …

Watch More Solved Questions in Chapter 12

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83

Video Transcript

in the question they are asking for two. Type of question. Question number is find the parametric equations of line of intersection of the plains and question B is find the angle between these planes. The equations of these planes are number 13 x minus to a plus and equal to one and number two to express by ministries that equal to three. In order to find out answer to the first question it is asking too find the parametric equations of the line of intersection of these planes. So solution to question is first, we have to find the normal vectors of these two planes, so no victor to play, money is equal to 3 -2, 1, and normal vector of the second point is equal to 2, -3. So in order to find the equation, we have to first find out normal to the plane That is equal to N one cross and two victor. That is equal to the cross product formula. According to the table. The value of anyone is three minus 21 And in two is 2, -3. So the value of the normal vector N is equal to five 11 7. And after this we have to find the coordinates at the point of intersection. Therefore coordinates at the point of intersection Of these two planes. Yeah, can be found as follows, if we put the value of Z is equal to zero. In equation one and two we get She X -2 is equal to one and two weeks less. Why equal to three? So in order to compute the value of X and why? We have to equate these two equations. So we have to multiply the second equation between order to cancel out the term. So this is after multiplying with do we get so the after adding these two equations, why terms get cancelled out and therefore seven X equal to seven? And the value from here For X is equal to one. And yeah, if you put the value of X equal to one from above then value of Y is equal to mhm by solid from any other two equations, we get the value of Y Which is equal to one. Therefore we found the coordinates the at the point of intersection of these two planes to be yeah is equal to yeah 11 zero. Therefore, in order to find the parliamentary equation at the point of intersection of these two planes. Yeah, yeah. Is equal to the coordinate less. The normal vector component for the corresponding direction vector. So one plus 5 d I cap Plus one plus 11 T. Jacob plus zero plus 70 K cups. This is equal to in more general form to find a parametric equation. We can say that the corresponding coefficient of the three direction vectors I J and K caps are the values of X by nz. So this is X. This is why. And this is it. And hence we find a parametric equation as X equal to one plus 5 50 Y equal to one plus. Eleventy. And there is equal to 17. This is the answer to the question A. Of the given question. And the next question they are asking to find the angle between these two planes. So the formula to find the angle is caused citizen were to the scalar per that of the values of normal vectors. And divided by the the scalar product of the individual normal vectors. Right? So the value of course tita is equal to Yeah From the values of N one and 2 as evaluated before it is equal to and one is equal to mhm three minus two, one and into Vector is equal to two, one minus three. So you see catholic top dot product. We get Capacity equal to 6 -2 -3 divided by route under nine plus four plus one multiplied to nine route and the nine plus four plus one. This is equal to One divided by 14. And therefore Peter is equal to cause inverse of one x 14. Mhm. So the value of the pita in degree is equal to 85 point nine 044 Degree. The question they're asking to find out the value of theta rounded to one decimal place. So this is equal to 85.9°. Therefore answer to the second question is Tita, is he going to 85.9° and this is the answer for the angle between the two planes

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
63
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
42
Hosted by: Alonso M
See More

Related Topics

Vectors

Top Calculus 3 Educators
Lily An

Johns Hopkins University

Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Joseph Lentino

Boston College

Calculus 3 Courses

Lectures

Video Thumbnail

02:56

Vectors Intro

In mathematics, a vector (from the Latin word "vehere" meaning "to carry") is a geometric entity that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. Vectors play an important role in physics, engineering, and mathematics.

Video Thumbnail

11:08

Vector Basics Overview

In mathematics, a vector (from the Latin word "vehere" which means "to carry") is a geometric object that has a magnitude (or length) and direction. A vector can be thought of as an arrow in Euclidean space, drawn from the origin of the space to a point, and denoted by a letter. The magnitude of the vector is the distance from the origin to the point, and the direction is the angle between the direction of the vector and the axis, measured counterclockwise.

Join Course
Recommended Videos

10:29

(a) Find parametric equations for the line of intersection of the planes and (b…

04:38

Find the parametric and symmetric equations for the line of intersection of the…

09:13

Determine parametric equations of the line of intersections of the planes: x + …

03:16

Find parametric equations and symmetric equations for the line. The line of …

02:51

Find parametric equations for the line of intersection of the planes $2 x+y-3 z…

02:25

Find parametric equations of the line of intersection of the planes. $$ \begin{…
Additional Mathematics Questions

02:15

'I need help with this please
Find the height of the tree given the…

03:39

'How do you get the answer of (6,6) for part g ?
robot from the vid…

00:39

'7 . Sally is an architect who is tasked with creating a scaled model f…

02:13

'I need help with this multiple choice question, thanks!
Suppose com…

06:02

'Please show all work! Compute SSxx, SSxy, and SSyy. Compute slope of t…

01:15

"Geometry is everywhere in the world. Leonardo Da Vinci's painting…

05:38

" I was struggling with these questions and hoped you can help me by an…

04:13

'Find - the lenglh of the line segment whose endpoints are (1,5) and (8…

04:04

'Please show working not only the answer
Problem: A ball is thrown…

04:04

'Please show working not only the answer
Problem: A ball is thrown…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started