Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

A stone is dropped into a lake, creating a circul…

02:22

Question

Answered step-by-step

Problem 13 Hard Difficulty

(a) Find the average rate of change of the area of a circle with respect to its radius $ r $ as $ r $ changes from
(i) 2 to 3 $ \space \space \space $ (ii) 2(0 2.5 $ \space \space \space $ (iii) 2 to 2.1

(b) Find the instantaneous rate of change when $ r = 2. $

(c) Show that the rate of change of the area of a circle with respect to its radius (at any $ r $ ) is equal to the circumference of the circle. Try to explain geometrically why this is true by drawing a circle whose radius is increased by an amount $ \Delta r. $ How can you approximate the resulting change in area $ \Delta A $ if $ \Delta r $ is small?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Heather Zimmers
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Heather Zimmers

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:46

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 7

Rates of Change in the Natural and Social Sciences

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

05:07

(a) Find the average rate …

06:04

(a) Find the average rate …

02:39

(a) Find the average rate …

02:18

Area and Circumference of …

01:04

Find the rate of change of…

01:37

What is the rate of change…

01:07

Find the rate of change of…

00:58

Circle's changing are…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39

Video Transcript

in this problem. We're looking at the area of a circle and we're finding average rate of change for various increments. Changes in the radius starting with the radius change from 2 to 3. And any time you're looking for an average rate of change, you're just using a basic slope formula. So if the radius is changing from 2 to 3, what we want to do is find the area for a radius of three, minus the area for a radius of two and divide that by three minus two. That would be our slope formula. So we end up with the area where a radius of three is pi times three squared. So that would be nine pie on the area for a radius of two would be pi times two square, so that would be four pi. We're dividing that by one, and so we get five pi. For the second part, we're finding the rate of change. The average rate of change as a radius changes from 2 to 2.5. So same idea the area for 2.5 minus the area for two over 2.5, minus two on the area for 2.5 is 6.25 Pi in the area for two is four pi and we're dividing that by 40.5 and this gives us 4.5 pi. We're going through that process one more time, and the radius is changing from 2 to 2.1. So we have the area for radius of 2.1, minus the area for radius of to over 2.1 minus two. And that gives us 4.41 pie minus four pi over 0.1. And that works out to be 4.1 pie. Okay, so for part B, we're finding the instantaneous rate of change when R equals two. So we're finding a prime of to First, we need to find a prime of X. I remember A of X was the area of the circle. I should call it A of our high r squared is the area of the circle. So it's derivative would be two pi r. So then a prime of to would be two pi times to, and that would be four pi notice that our previous answers were getting closer and closer to four pi. The smaller our interval got we had five pi. We had 4.5 pi and we had 4.1 pie and if our interval had gotten even smaller, we would have been even closer to four pi. All right, for part C noticed that the rate of change of the area is two pi r and we also know that the circumference of a circle is two pi r. So we're noticing that those are the same and we want to look at a geometric argument for that. So we have our circle with Radius R, and it grows bigger. And now the radius is r plus Delta are so our new circle has area. High times are plus Delta R squared and our old circle had area high r squared. So the Delta A The change in area is the new area minus the old area, and that would be pi times are plus Delta R squared minus pi times R squared. Let's simplify that. We can factor a pie out of both and then we're going to multiply out the binomial and we get R squared plus two are Delta are plus Delta R squared minus R squared the minus R squared comes from this last term. Who factored out the pie earlier. Notice that we can cancel the are scored in the minus r squared. So what we have left for the change in area is pi times a quantity to our delta are plus Delta R squared. Now suppose we were interested in Delta. A over Delta are change in area over change in time. We're going to take what we just got for Delta A and divide it by Delta R. And while we're doing that, let's factor out of Delta. Are so we have pie times. Delta are times to R plus Delta are over, Delta are canceled, The Delta are from the top of the bottom and we have pie times to R Plus Delta are now. Suppose we're looking at a very small they'll toe are. If Delta are is extremely small, then that's essentially zero. On what we have left is two pi r the circumference of a circle. So if you were interested in approximating a change in area for a very small delta, are you would just approximate it by finding the circumference

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
142
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

05:07

(a) Find the average rate of change of the area of a circle with respect to its…

06:04

(a) Find the average rate of change of the area of a circle with respect to its…

02:39

(a) Find the average rate of change of the area of circle with respect to its r…

02:18

Area and Circumference of a Circle A circle of radius $r$ has area $A=\pi r^{2}…

01:04

Find the rate of change of the area of a circle with respect to the radius $r .…

01:37

What is the rate of change of the area of a circle $\left(A=\pi r^{2}\right)$ w…

01:07

Find the rate of change of the area $A$ of a circle with respect to (a) the dia…

00:58

Circle's changing area What is the rate of change of the area of a circle $\lef…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started