Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

(a) Find the intervals of increase or decrease. …

01:47

Question

Answered step-by-step

Problem 40 Medium Difficulty

(a) Find the intervals of increase or decrease.
(b) Find the local maximum and minimum values.
(c) Find the intervals of concavity and the inflection points.
(d) Use the information from parts $ (a) - (c) $ to sketch the graph.
Check your work with a graphing device if you have one.

$ g(x) = 200 + 8x^3 + x^4 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Madi Sousa
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Madi Sousa

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:55

Carson Merrill

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 3

How Derivatives Affect the Shape of a Graph

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
AC

Alexander C.

November 13, 2020

Can you fix this please

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:02

(a) Find the intervals of …

0:00


(a) Find the intervals…

0:00


(a) Find the intervals…

04:53

(a) Find the intervals of …

05:23

(a) Find the intervals of …

06:33

(a) Find the intervals of …

0:00


(a) Find the intervals…

0:00


(a) Find the intervals…

06:08

(a) Find the intervals of …

02:43

(a) Find the intervals of …

0:00


(a) Find the intervals…

04:31

(a) Find the intervals of …

05:23

(a) Find the intervals of …

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 93

Video Transcript

Yeah, In this problem, we are learning how the derivative effects the shape of a graph. So specifically, we're going to be using the 1st and 2nd derivative test to determine things like where our function is increasing or decreasing and the con cavity of our function. Now you might be asking, Why do I need to know this? Well, this gives us a lot of information about the functions behavior, but also this is going to come in handy when you're learning how to curve sketch in calculus. This is all leading up to that. So for part A were given the function G of X equals 200 plus eight x cubed plus X to the fourth. Now we need to find the intervals of increase or decrease. So the first thing we should do is take the derivative we'll take G Prime of X will get 24 x squared plus four x cubed. And then we can factor out a term that is common with both of the terms in our derivative so we can factor out of four x squared. So when we do that, we get four x squared times six plus X and then we need the critical numbers of the function. So we'll set this simplified derivative equal to zero and solve for X well X zero on X is negative. Six. So what we see is you can plug in a point into our original function and determine if it's increasing or decreasing. And if you do that, you can see that ffx is increasing when X is greater than negative six. And ffx is decreasing when X is less than negative. Six. I'm sorry. This should be G of X. It's still the function. Um, my apologies now for Part B, we're told. Where is the local maximums or minimums? Well, we have a local minimum by the first derivative test at X equals negative six so we can plug in negative six and to our original function, G. And we'll get the other coordinate. So if we plug in, negative six will take G of negative six and I'll get negative to 32. So that is the point that we see a local minimum in our graph now for part C, we're told, Well, let's determine the con cavity of our function. Now when you hear the word con cavity. You should know that this is directly associated with the second derivative. You can't determine Con cavity with the first derivative. We need the second so we'll take G double prime of X and we'll get four X. Pardon me 48 X plus 12 x squared again. Factor out a term to make it easier to find. The critical numbers will factor out a 12 X and then we'll multiplied by four plus X well cited equal to zero solve for X X zero and X is negative four. So now we could makes minerals and determined con cavity. So our first interval would be negative infinity to negative for. And then you can plug in a point within that interval and determine the sign of the function. And when you do, we determine that this is con cave up in the interval and then our second interval is negative for 20 and that would be con cave down. And then finally we have zero to infinity and that would be Khan gave up. So what we can see here is he went from concave up to down, toe up. That means we have an inflection point, we have an inflection point in X equals negative four and X equals zero. And then finally, we're told, Well, what's going to happen if we graph this? Will the information we found match the graph of the function and it does. You can see the graph. We see the same intervals of increasing decreasing con cavity. And so this is a great way to check your work. Um, or you can work backward from the graph also. So I hope that this problem helped to understand a little bit more about how the derivative affect the shape of the graph and how we can use differentiation to find things like the interval of increase in decrease and the con cavity.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
175
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
75
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:02

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

04:53

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

05:23

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

06:33

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

06:08

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

02:43

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

04:31

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

05:23

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started