Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

(a) Find the intervals of increase or decrease. …

04:36

Question

Answered step-by-step

Problem 37 Hard Difficulty

(a) Find the intervals of increase or decrease.
(b) Find the local maximum and minimum values.
(c) Find the intervals of concavity and the inflection points.
(d) Use the information from parts $ (a) - (c) $ to sketch the graph.
Check your work with a graphing device if you have one.

$ f(x) = x^3 - 12x + 2 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Kian Manafi
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Kian Manafi

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

04:47

Fahad Paryani

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 3

How Derivatives Affect the Shape of a Graph

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

05:23

(a) Find the intervals of …

03:13

(a) Find the intervals of …

05:23

(a) Find the intervals of …

0:00


(a) Find the intervals…

04:53

(a) Find the intervals of …

04:36

(a) Find the intervals of …

0:00


(a) Find the intervals…

05:23

(a) Find the intervals of …

0:00


(a) Find the intervals…

05:23

(a) Find the intervals of …

06:33

(a) Find the intervals of …

06:08

(a) Find the intervals of …

06:39

(a) Find the intervals of …

0:00


(a) Find the intervals…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 93

Video Transcript

So in part a we're going to find where our function F of X is increasing and decreasing. So I've just written down the derivative already and I just use the power rule to find this. And so we're just going to figure out where are derivative is positive and where it's negative. So the easiest way to do this I think is to find where it's actually equal to zero first. Since then we can know what intervals to look at to see how our the sign of our derivative F. Prime of X. And so I'm just solving for X. Here we get four is equal to X squared, so X is equal to plus or minus two. So a plus or minus two. We have f prime of X equaling zero. And now if we look at the intervals X being less than negative two, X being between negative two and two, and X being greater than X being greater than two. Sorry. And we look at the sign of our derivative, we'll know where we're increasing and decreasing. So if we plug in an X value less than negative two, let's just say negative three. We get nine times three minus 12 which is positive. So are derivative. F prime of X is greater than zero. We plug in a value between negative two and two. Let's just say zero. We get zero minus 12 which is negative. So are derivative F prime of X is less than zero. And then if we plug in the value of X greater than two, say three, we get nine times three again, 27 minus 12 is positive. So the intervals in which were increasing, we're going to be the first and last intervals. So from negative infinity to negative two and from two to infinity. And then we're decreasing in this other interval from negative to 22 Now, if we go to part B, we're going to do is find local maximum and minimum values. And we already found the zeros of our derivative up here at plus and minus two. So we're just going to look at actually, we're just going to look at the information we already found. So you want to look at values of X less than negative two. We can see that we're going positive and the values after negative to our negative. So we're going from increasing slope to decreasing slope at X is equal to negative two, which means we have a maximum value. So we have a local max at X is equal to negative two. And if we look at the values before too, but greater than negative two were negative and then greater than two were positive. So we're going from negative values to positive values are decreasing slope to increasing slope, which means it is a local minimum. And now for part, see what we're gonna do is find the intervals in which our function f of X is concave up in concave down. And then we're also going to find the intervals are the points of inflection. So I've written down this first derivative because we're going to use it to find our second derivative, which then we can use to figure out con cavity. So I'm just gonna use the power rule again, find the second derivative, bring down the exponents gets six X. And this 12 goes to zero. And now this one we just want to look at where this is negative and where it's positive. Well you can see that's gonna be negative whenever X is negative, it's gonna be positive whenever X is positive. So we're concave up from zero to infinity. Since we need positive values are second derivative to be concave up, Merkel cave down from negative infinity to zero. And then we also have an inflection point at zero, since that's where our second derivative is equal to zero. And we know we're going from negative to positive. So we're actually crossing that X axis at X is equal to zero, so inflection point at X is equal to zero. And if we plug that back into our original equation this is actually equal to two. So we have the inflection point is at this 0.0.0 comma two. And now for part D, what we're gonna do is use all this information that we found and actually try and sketch a graph of of our functions. So we know that F zero is two, so zero comma two. And that's an inflection point, we know that F of zero is, oh never mind. We know that. We know the F. Of zero is too. So I plugged that point in here and now we want to look at, well we're concave up before we're sorry we're concave down when we're negative. So I'm just gonna put concave down, concave up. So I remember and then we have a local max at X is equal to negative two. A local men X is equal to two. So um what we're gonna do now is I'm actually going to just plug in F of two into our equation which was X the third minus 12 X two to the third minus 12 times two plus two. This is equal to eight minus 24 plus two. Just equal to negative 14. So we have this point at to negative 14. I'm just gonna put down here I'm not going to get super specific and now I'm gonna figure out f of negative two. So the only difference here is we're gonna have plus 24 instead of minus and this is going to be eight plus 24 32 34. So you have a point F is equal to negative two 34. Just stay up here and now we can look at and this is at negative two and we know that this is a maximum value. This is a minimum value. Mhm. And now we can look at we're increasing from negative infinity to negative two and we are concave down right, so we need to be increasing in concave down and then we're decreasing in concave actually instead of so we're increasing in concave down. And then at this point here too we start to be concave up since that's an inflection point and we are now still decreasing until we get to this point at two comma negative 14 and then we start increasing again. So we need to go all the way down into this point to and we can start increasing again and actually shouldn't make it look like we start to go concave down again since we don't have another inflection point. So this is somewhat of what our graph should look like. Again, we have these local max is that x is equal to negative two. Local men addicts is equal to two. We're decreasing from negative to to to or increasing from negative infinity to negative two and from two to infinity. And we're concave up where we need to be re concave down where we need to be. We have this inflection point at zero comma two. So yes, this is indeed a good rough sketch of our graph.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
151
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

05:23

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

03:13

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

05:23

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

04:53

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

04:36

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

05:23

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

05:23

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

06:33

(a) Find the intervals of increase or decrease. (b) Find the local maximum and …

06:08

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

06:39

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…

0:00

(a) Find the intervals of increase or decrease. (b) Find the local maximum and…
Additional Mathematics Questions

00:40

The efficiency gains resulting from a just-in-time inventory management syst…

02:03

CRA CDs Inc. wants the mean lengths of the "cuts" on a CD to be 14…

10:30

MINI CASE: MEXICO'S BALANCE OF PAYMENTS PROBLEMRecently, Mexico experie…

01:40

Greta must volunteer 225 hours for a community service project. She plans to…

03:29

Your grandmother bought an annuity from Rock Solid Life Insurance Company fo…

02:26

What is the future value of a $700 annuity payment over six years if interes…

01:14

find the score for which 92% of the distribution lies between -z and z

02:17

Mary and David are partners who share profits and losses on a 3:1 basis. Thi…

01:00

May 16: Paid part-time receptionist for two weeks' salary including the…

02:42

Alpha manufactures chairs, and each requires 4 board feet of lumber. Alpha e…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started