Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the values of $ c $ such that the area of th…

08:40

Question

Answered step-by-step

Problem 58 Hard Difficulty

(a) Find the number a such that the line $ x = a $ bisects the area under the curve $ y = \frac{1}{x^2} $, $ 1 \le x \le 4 $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Catherine Ross
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Catherine Ross

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 6

Applications of Integration

Section 1

Areas Between Curves

Related Topics

Applications of Integration

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Join Course
Recommended Videos

01:13

Find the number $a$ such t…

04:34

Find the number such that …

04:49

QUESTION
The number @ s…

05:04

Consider the curve $y=1 / …

02:21

If the straight line $x=b$…

02:08

Let the straight line $x=…

06:07

Find the area of the surfa…

01:26

The given curve is rotated…

11:04

The given curve is rotated…

Watch More Solved Questions in Chapter 6

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61

Video Transcript

find a number. A such set. The Line X equals a by sex. The area under the given curve Why equals one over X squared. And then we have this domain that X is between one and four. So let's first get a feel for this function again using the domain that X is between one and four. We can on Lee feed our function. Why, with X values in that domain. So how about one, two, three and four and so why becomes one too? Is 1/4 three is one night and four is 1/16. So let's plot that blue function there on our X y table here. So one in one, the scales a little bit, um, not uniformed, but that's okay to end 1/4 and three and one knife is around there, say, and four and 1/16. Let's put that there. All right, then we have the access between one and four. So we've got a left bound and a right bound, Um, right before our eyes, X equals one would be the left bound. We'll call that l B and X equals four. That's the right bounds will call that our B and, well, just plot those lines right here. And it's, um it's kind of gonna cover our one, but that's okay. We know that X equals one, and then X equals four. All right. And then let's connect these dots as well. The blue guys. So we're building this, um, enclosed area between these curves, and then the last thing we need is to know. Well, what is the what is tthe e lower bound? What's on the bottom? And so, um, we can take the limit as X approaches infinity of why and see where that tends to. So that is Theo Limit as X approaches. Infinity of one over X squared, which is zero. So the lower bound is going to be Y equals zero. We'll do that in red. I was there. Okay, so we've got this green enclosed region that we want to find. Um, some line X equals a that bisects that green region. Um, So what we want to do here is fine. What is the actual area of this region? Then we're gonna find what half of the area is, and then find that line X equals a find that a value that yields half of Theis area of this region. So since we first want to find the area of this region, we're going to take an integral We're going to use our, um, functions and look in our bounds that we've discussed here. And so we would have that the area of the green region is equal to the integral from, um, for the bounds, we're gonna take our left bound minus our, uh, excuse me. We're gonna take our left down in our right bound. We're going to use those guys. So the, um smaller one, the left bound to the right, bound. And then we're going Thio, subtract the top function minus the bottom function. So blue minus red. So that's one over X squared minus zero DX. And so that gives us, of course, the integral from 1 to 4 of one over X squared DX. And then I like Teoh, Right? This, um with X in the numerator and then just use negative exponents. So that makes it more clear what I need to do when I integrate so negative x to the minus one. Evaluated from 1 to 4. And then that's negative. One over x evaluated from 1 to 4. So then plugging those in upper bound first or the the top down first minus one over four minus a minus one over one, which is just one. So this gives us negative 1/4 plus four over four, which is three over four. So that is tthe e entire area of the green region. So then half of that area is, of course, 1/2 times the full area, which is three over eight. So this is half of the area of that green region, and what we want to do now is fine. The value for a that will yield. Um, when we take the integral to try to find half of the area will yield indeed, half of the area. So we're going to suppose that we have some line X equals A, and we're going thio tried thio um find, uh, that a value. So let's take the, um, right half of the area that has resulted in our supposed line X equals A. We're gonna taken Inderal and do pretty much the same thing that we just did, except now our left bound. Instead of being one, we're going to start it at a and then go to our right bound being for So we will have that half the area which we know is 3/8 is equal to the inner girl from a 24 of our top function minus our bottom functions. So one over X squared, minus zeros. We don't even need to write that D X, which we know is negative one over X and we're evaluating that from a 24 So that gives us negative 1/4 minus a minus one over a and this yields. Then, of course, we can simplify that negative one over four plus one over a. So we have three over eight equals negative 1/4 plus one over a course for solving for a here. So plus 1/4 um, plus 2/8 right? Same thing is 1/4 was cancel. We have 5/8 equals one over a and then flip around both sides just like so. So we have that a equals eight over five, and that is the value of that line. So the line X equals eight over five by sex that green region, so that we have half of the area on each side

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
153
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Applications of Integration

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Recommended Videos

01:13

Find the number $a$ such that the line $x=a$ bisects the area under the curve $…

04:34

Find the number such that the line x bisects the area under the curve below. 1<…

04:49

QUESTION The number @ such that the line X = bisects the area bounded by the cu…

05:04

Consider the curve $y=1 / x^{2}$ for $1 \leq x \leq 6$ (a) Calculate the area u…

02:21

If the straight line $x=b$ divide the area enclosed by $y=(1-x)^{2}, y=0$ and $…

02:08

Let the straight line $x=b$ divide the area enclosed byy $=(1-x)^{2}, y=$ 0, a…

06:07

Find the area of the surface generated when the given curve is revolved about t…

01:26

The given curve is rotated about the y-axis. Find the area of the resulting sur…

11:04

The given curve is rotated about the $y$ -axis. Find the area of the resulting …
Additional Mathematics Questions

04:54

A point Q on a segment with endpoints A (2, -1) and C (4, 2) partitions the …

01:05

I need help with this math question1.)If it takes a quart of paint to cover …

01:11

Calculate the mass of a sample of pure silver (density of 10.49 g/mL) that h…

02:36

4. A pupil in grade 2 jumped 3.2 m for the long jump. The class mean is 2.5 …

01:42

Suppose the true proportion of voters in the county who support a restaurant…

08:11

In 3-5 sentences, list your favorite tool (Lean Six Sigma Green Belt) course…

06:30

The DMAIC process enables a team to use statistics to validate root causes o…

04:02

Consider when businesses might use confidence intervals to estimate values, …

02:47

Company XYZ know that replacement times for the quartz time pieces it produc…

02:00

You make yearly payments of $800 in a sinking fund that pays 3% interest com…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started