Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

(a) Find the vertical and horizontal asymptotes. …

19:14

Question

Answered step-by-step

Problem 54 Hard Difficulty

(a) Find the vertical and horizontal asymptotes.
(b) Find the intervals of increase or decrease.
(c) Find the local maximum and minimum values.
(d) Find the intervals of concavity and the inflection points.
(e) Use the information from parts $ (a) - (d) $ to sketch the graph of $ f $.

$ f(x) = x - \frac{1}{6}x^2 - \frac{2}{3} \ln x $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Fahad Paryani
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Fahad Paryani

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 3

How Derivatives Affect the Shape of a Graph

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:26

(a) Find the vertical and …

05:47

(a) Find the vertical and …

14:43

(a) Find the vertical and …

19:14

(a) Find the vertical and …

04:41

(a) Find the vertical and …

03:12

(a) Find the vertical and …

04:41

(a) Find the vertical and …

05:34

(a) Find the vertical and …

04:57

(a) Find the vertical and …

04:12

(a) Find the vertical and …

03:03

(a) Find the vertical and …

04:19

(a) Find the vertical and …

06:41

(a) Find the vertical and …

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 93

Video Transcript

but to find the vertical and horizontal atom tones of Africa. Ah, oui. There's a couple of ways we can do it. So previously we've been doing it by looking at the denominator and where that equals zero to give us thie. Very classical. But another way to do it is to take the limit off some number A, and it should give plus or minus infinity. Then we have a very flat. So we know that first of all, that there's a national documents Foxes. So the domain of dysfunction is all excreted D'Oh So it would be interesting to evaluate what's going on at as limit as X goes to zero from the right and you can do to accept a Titian. So you get your own minus zero minus. And at national art goes to infinity. It goes to negative infinity because reminder that the graf the national art function looks like this like this and it goes off to negative finished as it gets to zero. So nave negative makes in positive infinity, which is still a very classy So So we have you really blasted out a tactical zero, and if you know Paul in over farm for international continuous and everywhere else honest domain. So we don't have to worry about anything else. This is Theo, only radical ass and talk to her now. Ah, to find horse out. Asked that we take a limit at that grows to infinity. We want the word about negativity because remember coming greatest zero eso this one. You also have to do a kind of an intuitive approach. It is Otherwise we stuck doing some sort of horrible local tall problem or a very complex, very complex limit so you can think about is and finish minus infinity minus some number because national all kind of dies off. So infinite, even infinity, That's what What that really gives us still some some form of infinity. So we don't really We have no horizontal ask himto so no orders our class until so now what we do is we're going to find the interval than most folks and increases and decreases. So we take the first derivative and apply. And first, first it just comes out as one minus X over three minder to three x. We start the sequel to zero. So what I'm going to do is going to bring two of the three acts over, and then I'm going to simplify attraction. You ever get out? I'm gonna be right there as three minus X over three, and then I'm bringing to over three x over. And then I'm gonna multiply both sides by three x and I should give me nine X minus three X squared and it canceled out with three B And then when I got about three on the outside, I get six here. I mean, I multiply by three combo size. I get six here, and then I bring six over our nine X minus three X cleared minus six equals you. Hey, I pull out a factor of three, and that's what you mean. Three, um X minus X. Where'd my net two and there's equals zero. And this could be him. But this commune factor at explain it to times one minus X giving us the solutions. Actually, ical two and one. Ah, now we're going to do our sign tried evaluation that will have what's evaluated zero because our domain is greater than zero. So we want to see what's going around there. And one and two bring a line down. Everyone. I ignore all that lesson. Joker, That's not not made. And now we find the sign of the primes are between June one. You get negative numbers. Ah, between one and two. Get positive numbers and all greater than to get negative number. So we have a decreasing increasing, decreasing. So we have a local men at tactical is one and a local Mac at X equals two. To find the con cavity of our function, you have to get thie second derivative and applied a second over. Ted and this second David come down three negative three squared six over nine x Clint and he said, the topic or zero. So you say calls. You know, So you have negative three X squared plus six equals E o. You can get rid of the negative of the plus minus six will be three x squared equal six divided by three. Got actually cool, too technically plus or minus. But we ignored the negative because all our numbers positive remain. That's credit and zero. So I would do another side chart evaluations. So we have zero and two. I like a double prime. We ignore last zero. So you plug a number of Liston in between two and we're two positive number. You plug in a power greater than retreat and negative numbers. So you have conquered up down the conclave of between two hundred two hand Kong came down from negative infinity to Oh, no, not not Trinity. Sorry about that. We're two to infinity now. We have enough information to draw hope. I also forgot about the inflection point. So we have an inflection point. It occurs when a sign changes and con cavity occurs. So that's between it goes on record that we're too that ex Eagle who to now we have enough information to our craft of affect So we know that it is restricted by this domain. So it has to be X rated video. We have bor. We have no horizontal jacinto and we notice con cave up So we know that there's a U shape occurring So it's going to come down to the glass enter as Jiro So it's going to come down like this. You have a u shape. We're going to create a little cold men at one when they keep going up and then we're going to Sweet con camp. There were two which is approximately right here. There's gonna increase between one and two. So we're going to get a local max at two. And then I still can't give down now and we know has been a decrease after, too. So it's just going to go down. So this is two. And this is what? And that is it. That's the graph of athletic

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
71
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
49
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:26

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

05:47

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

14:43

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

19:14

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:41

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of incr…

03:12

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:41

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of incr…

05:34

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:57

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:12

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

03:03

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:19

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

06:41

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…
Additional Mathematics Questions

04:19

A new diagnostic centre, with laboratories and computer-imaging equipment; i…

00:59

Match Graph/Equation Ax+ By = C (MC) Oct 09,4.56.20 PM
Which of the follo…

01:58

Graphing Linear Inequality in Two Variables
Inatructions: Using a graphin…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started