Download the App!
Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.
Question
Answered step-by-step
(a) Find the vertical and horizontal asymptotes.(b) Find the intervals of increase or decrease.(c) Find the local maximum and minimum values.(d) Find the intervals of concavity and the inflection points.(e) Use the information from parts $ (a) - (d) $ to sketch the graph of $ f $.
$ f(x) = e^{\arctan x} $
Video Answer
Solved by verified expert
This problem has been solved!
Try Numerade free for 7 days
Like
Report
Official textbook answer
Video by Fahad Paryani
Numerade Educator
This textbook answer is only visible when subscribed! Please subscribe to view the answer
Calculus 1 / AB
Calculus 2 / BC
Chapter 4
Applications of Differentiation
Section 3
How Derivatives Affect the Shape of a Graph
Derivatives
Differentiation
Volume
University of Nottingham
Idaho State University
Boston College
Lectures
04:35
In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.
06:14
A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.
03:36
(a) Find the vertical and …
06:41
04:41
03:20
05:34
03:03
19:14
05:47
03:12
14:43
04:57
Okay, so we're being has to find a vertical and horizontal passenger effort back. And so for vertical hasn't. So we're looking at a fucking that's e raised to the power of the arc can of axe and is an exponential function. And it is continues everywhere and and have nose, um, sort of vertical. Ask himto anywhere. Is that possible? I mean, it's not in this case, so we know that there's no vertical acidosis, so no vertical ascent because it's an exponential function. However, for the the Ark can function. We have. Ah, we do have a scent of it on the Ark Chan funk and show as a reminder. Um, the graph, actually. Ah, looks like this has, like a pie, and it kind of goes like this. This goes off to pie over to andnegative pie over, too. So this is pi over to. This is not very drawn very well, but this goes off to negative pie. So there's a There's an acid, there's a horizontal assets, a recurring and art panics. And there's a very good chance that it's also occurring in F of X. So we're going to look at how the function behave as they go off to infinity. So the limit as X goes to infinity. So what we're going to do is first going evaluated for our ten. So our can X and you'LL see why in a second and to the limited excuse Intramural Panamax Ahs! You've seen this picture is pi over too? And so that means that the limit as X goes to infinity of ethics, it's going to be e to the pie over too. So we do have courses on things and for the limit as explosive. Negative infinity for our cannon back is going to be negative. Pile over too. So that means that the limit as X goes to negative infinity of FX he's going to give us Yeah, today I get to fly over to so we have two horns on the after we have won it. Why the e um anything that down here? Why t e ty over too and e to the minus pirate too. To find where the function is increasing and decreasing, we take the first planet First derivative testament. You find sir a prime. And since this is an e racy or can we're going to have to do, general. And so it comes out to be our can of X all over one plus x word. And now, if you look at this function, we know that the exponent the function is always positive, and we know that the denominator cannot be negative so that dysfunction is always zero is always greater than you know. So it is always increasing, always increasing, I said. I mean, it is increasing from negative infinity to infinity, and that is so That means they were so senses, always increasing. We know that there's no local minimum max either, because there's no point in which there is the function of dipping either. So there's no local Miramax. No, now for controversy. We look at the second derivative and see how f double prime changing that's double prime of X is equal Tio e. R. Ten of times negative two x plus one all over one plus X squared. Where'd you think? Easy. Jochen can never equal zero. So we have to look a negative Force one because, you know, and to cross one zero and you get X equal one half. Now we do a sign chart and we're going to evaluate it around one half. So if we look at the sign of af double prime when it is less than one half of this positive number is greater than one half its negative numbers that it's conking out, I can keep down. So it's Kong cave of from negative infinity to on half. And then Khan gave down from one half one have to infinity So and also we have an inflection point. You have a deflection point occurring at one half because that's where the sign change for our con cavity is a crime going from positive to negative. Now we have enough information to draw our graph us. So this is going to be all this is going to be all above the X axis because the lower bound for our, uh where is aunt asking those eating negative private too, which is still a positive number. So this could represent a two five two. And this could be you're a pilot too, So the function will actually look something like this that will be coming up. And then one half it was switch and have a new con company. So it goes from conclave up, two down and that's basically the graph of F Back like that. This is Justin more straight and no local maximum and as it
View More Answers From This Book
Find Another Textbook
05:00
If the positions of the first and the third digit within each number are int…
04:13
Evaluate whole root 5-2 root 6 + whole root 10 - 2 root 21
01:09
8 years ago there were 5 members in the Arthur's family and then the av…
01:06
A bag contains 7 green and 5 black balls. Three balls are drawn one after th…
01:15
Find the value of p for which x =-2, y=-1 is a solution of the linear equati…
06:24
Find three rational numbers lying between 0 & 0.1. Find twenty rational …
01:45
if 5 cot theta = 4, evaluate 2 sin square theta + 3 cos square theta / 7 sin…
02:03
The probabilities that A and B will tell the truth are 2 / 3 and 4 / 5 respe…
01:16
I guessed a number (x) then added 10 to it. Give the expression for double o…
You are given a bag with 10 balls, of which 3 are red, 3 are blue, 1 is yell…