Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Suppose the derivative of a function $ f $ is $ f…

02:05

Question

Answered step-by-step

Problem 56 Hard Difficulty

(a) Find the vertical and horizontal asymptotes.
(b) Find the intervals of increase or decrease.
(c) Find the local maximum and minimum values.
(d) Find the intervals of concavity and the inflection points.
(e) Use the information from parts $ (a) - (d) $ to sketch the graph of $ f $.

$ f(x) = e^{\arctan x} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Fahad Paryani
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Fahad Paryani

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 3

How Derivatives Affect the Shape of a Graph

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:36

(a) Find the vertical and …

06:41

(a) Find the vertical and …

04:41

(a) Find the vertical and …

03:20

(a) Find the vertical and …

05:34

(a) Find the vertical and …

03:03

(a) Find the vertical and …

19:14

(a) Find the vertical and …

05:47

(a) Find the vertical and …

03:12

(a) Find the vertical and …

14:43

(a) Find the vertical and …

04:57

(a) Find the vertical and …

04:41

(a) Find the vertical and …

04:41

(a) Find the vertical and …

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 93

Video Transcript

Okay, so we're being has to find a vertical and horizontal passenger effort back. And so for vertical hasn't. So we're looking at a fucking that's e raised to the power of the arc can of axe and is an exponential function. And it is continues everywhere and and have nose, um, sort of vertical. Ask himto anywhere. Is that possible? I mean, it's not in this case, so we know that there's no vertical acidosis, so no vertical ascent because it's an exponential function. However, for the the Ark can function. We have. Ah, we do have a scent of it on the Ark Chan funk and show as a reminder. Um, the graph, actually. Ah, looks like this has, like a pie, and it kind of goes like this. This goes off to pie over to andnegative pie over, too. So this is pi over to. This is not very drawn very well, but this goes off to negative pie. So there's a There's an acid, there's a horizontal assets, a recurring and art panics. And there's a very good chance that it's also occurring in F of X. So we're going to look at how the function behave as they go off to infinity. So the limit as X goes to infinity. So what we're going to do is first going evaluated for our ten. So our can X and you'LL see why in a second and to the limited excuse Intramural Panamax Ahs! You've seen this picture is pi over too? And so that means that the limit as X goes to infinity of ethics, it's going to be e to the pie over too. So we do have courses on things and for the limit as explosive. Negative infinity for our cannon back is going to be negative. Pile over too. So that means that the limit as X goes to negative infinity of FX he's going to give us Yeah, today I get to fly over to so we have two horns on the after we have won it. Why the e um anything that down here? Why t e ty over too and e to the minus pirate too. To find where the function is increasing and decreasing, we take the first planet First derivative testament. You find sir a prime. And since this is an e racy or can we're going to have to do, general. And so it comes out to be our can of X all over one plus x word. And now, if you look at this function, we know that the exponent the function is always positive, and we know that the denominator cannot be negative so that dysfunction is always zero is always greater than you know. So it is always increasing, always increasing, I said. I mean, it is increasing from negative infinity to infinity, and that is so That means they were so senses, always increasing. We know that there's no local minimum max either, because there's no point in which there is the function of dipping either. So there's no local Miramax. No, now for controversy. We look at the second derivative and see how f double prime changing that's double prime of X is equal Tio e. R. Ten of times negative two x plus one all over one plus X squared. Where'd you think? Easy. Jochen can never equal zero. So we have to look a negative Force one because, you know, and to cross one zero and you get X equal one half. Now we do a sign chart and we're going to evaluate it around one half. So if we look at the sign of af double prime when it is less than one half of this positive number is greater than one half its negative numbers that it's conking out, I can keep down. So it's Kong cave of from negative infinity to on half. And then Khan gave down from one half one have to infinity So and also we have an inflection point. You have a deflection point occurring at one half because that's where the sign change for our con cavity is a crime going from positive to negative. Now we have enough information to draw our graph us. So this is going to be all this is going to be all above the X axis because the lower bound for our, uh where is aunt asking those eating negative private too, which is still a positive number. So this could represent a two five two. And this could be you're a pilot too, So the function will actually look something like this that will be coming up. And then one half it was switch and have a new con company. So it goes from conclave up, two down and that's basically the graph of F Back like that. This is Justin more straight and no local maximum and as it

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
126
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:36

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

06:41

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:41

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of incr…

03:20

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

05:34

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

03:03

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

19:14

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

05:47

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

03:12

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

14:43

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:57

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of inc…

04:41

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of incr…

04:41

(a) Find the vertical and horizontal asymptotes. (b) Find the intervals of incr…
Additional Mathematics Questions

05:00

If the positions of the first and the third digit within each number are int…

04:13

Evaluate whole root 5-2 root 6 + whole root 10 - 2 root 21

01:09

8 years ago there were 5 members in the Arthur's family and then the av…

01:06

A bag contains 7 green and 5 black balls. Three balls are drawn one after th…

01:15

Find the value of p for which x =-2, y=-1 is a solution of the linear equati…

06:24

Find three rational numbers lying between 0 & 0.1. Find twenty rational …

01:45

if 5 cot theta = 4, evaluate 2 sin square theta + 3 cos square theta / 7 sin…

02:03

The probabilities that A and B will tell the truth are 2 / 3 and 4 / 5 respe…

01:16

I guessed a number (x) then added 10 to it. Give the expression for double o…

01:16

You are given a bag with 10 balls, of which 3 are red, 3 are blue, 1 is yell…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started