Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

A telephone line hangs between two poles $ 14 m $…

04:57

Question

Answered step-by-step

Problem 50 Easy Difficulty

A flexible cable always hangs in the shape of a centenary $ y = c + a \cosh (x/a), $ where $ c $ and $ a $ are constants and $ a > 0 $ (see Figure 4 and Exercise 52.) Graph several members of the family of functions $ y = a \cosh (x/a). $ How does the graph change as $ a $ varies?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Yuki Hotta
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Yuki Hotta

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:17

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 11

Hyperbolic Functions

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Catherine Ross

Missouri State University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

02:04

A flexible cable always ha…

01:05

Solve the equation $e ^ { …

01:22

Solve the equation $e^{-y}…

02:29

Solve the equation $y^{\pr…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59

Video Transcript

All right, So let's go through this question. It basically is asking you if I have the expression. A Times coach off X divided by A as a changes. What kind of pattern do you see in the graph? Easy. We're just going to drop it and see what happens. Mhm. So first I am going to simply start with coach. Coach of X is a glass that looks like this. We know that it's an even function. It's a mixture off E to the X and E to the negative X, and it's split it in half. So that's why we know that it's It's a very nice curve that kind of looks like a parabola, and it's also usually modeled as things like wires handing. Uh huh. Let's see what happens when y is equal to to coach off X development. As you can see, the pattern is that now the height is instead of at one. It's now starting at two. It's being stretched out horizontally a little bit more. Let's see what happens if it's equal to five. Why equals two five? Coach off X of a five can see that now. The height is a little bit higher. It starts at five. It's being stretched out even farther. So long Story short, this pattern continues. If why equals a who's off X over a anything on the value of A, you're gonna be able to see what's gonna happen. So if it goes like this, when a is a fraction, it becomes very small. When a is a large large number, it just gets taller and taller and it gets stretched out horizontally. So I want you to pay attention to my cursor if you imagine that this is a point that I can pull to the left and to the right. That's basically what happens with wires. If you pull the wire sideways far apart from the center, the graph is going to be stretched out even more like this, and the very bottom part of the wire starts getting taller and taller. Right? So this is one of the reasons why this graph is very useful for representing how wires case okay? And that answers the question of how a coach X divided by a behaves

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
94
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
54
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

02:04

A flexible cable always hangs in the shape of a catenary $y=c+a \cosh (x / a),…

01:05

Solve the equation $e ^ { - y } y ^ { \prime } + \cos x = 0$ and graph several …

01:22

Solve the equation $e^{-y} y^{\prime}+\cos x=0$ and graph several members of th…

02:29

Solve the equation $y^{\prime}=x \sqrt{x^{2}+1} /\left(y e^{y}\right)$ and grap…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started