Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the limits as $ x \to \infty $ and as $ x \t…

05:41

Question

Answered step-by-step

Problem 59 Hard Difficulty

A function $ f $ is a ratio of quadratic functions and has a vertical asymptote $ x = 4 $ and just one
$ x $-intercept, $ x = 1 $. It is known that $ f $ has a removable discontinuity at $ x = -1 $ and $ \displaystyle \lim_{x \to -1} f(x) = 2 $. Evaluate
(a) $ f (0) $ (b) $ \displaystyle \lim_{x \to \infty} f(x) $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Ma. Theresa Alin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Ma. Theresa Alin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

07:45

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 6

Limits at Infinity: Horizontal Asymptotes

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

A function $ f $ is a rati…

01:13

A function $f$ is a ratio …

01:41

A function $f$ has a slant…

01:13

A function $f$ is said to …

01:13

A function $f$ satisfies t…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81

Video Transcript

suppose we have a rational function with the following properties. The first one it has a quadratic numerator and denominator. Now, this means that the function can be written into a leading coefficient eight times we have x minus a Times X -7 over x minus c times x minus D. Next property is it has a vertical sm towed at x equals four. And this means that x minus four is a factor in the denominator and so we have F of X equal to, we have eight times x minus a times x minus B over Have X -4 times X -T. Next property is that X equals one. Is the only x intercept. Now having an X intercept. That means that this um X value the factor will be A factor in the numerator. So X -1. We will see this in the numerator. So you have F of X. This is equal to we have eight times x minus one times x minus b over x minus four times x minus d. Another property says that It has a removable discontinuity at x equals negative one. This means that the graph of the function has a hole at X equals -1. And if you have a whole, that means that there is a common factor in the numerator and denominator. That means Experts, one is a factor in both the numerator and denominator. And so our function now becomes F of X is equal to we have eight times X -1 times expose one Over. You have X -4 times X plus one. Now to find this a we will use the last property that says The limit of this function as X approaches -1 is equal to two. And so we have we have limits As X approaches -1 of this function eight times x -1 Times X -1 over X -4 times x plus one. This is equal to we have We can cancel out the express one and we get limit as X approaches negative one of eight times X -1 over X -4. Now this is equal to two and evaluating at -1, we get eight times negative 1 -1 Over negative 1 -4, That's equal to two. We get Negative to a over -5. This is equal to two and we get hey that's equal to five. And so the complete form of our function is F of X. This is equal to we have five times X -1 Times X-plus one over X -4 times x plus one. Or if we expanded to get five times x squared -1 over have x squared minus three X -4. Or this is the same as five, X squared minus five over x squared minus three x minus four. Now we want to find f of zero and so we have F of zero. This is five times zero squared minus five over. You have zero squared minus three times zero minus four. This is just negative five over negative four or 5/4. So this is the value of f of zero and the next one is to find the limit as X approaches infinity of f of X. And this is just limit as X approaches infinity of five, x squared -5 over X squared minus three X minus four. Now, if we are taking the limits at infinity we simply take her out the variable with the highest exponents for the numerator and denominator. So it will be limit as X approaches infinity of the factor at that square we get five minus five over x squared this all over you factor out excrete again for the denominator and we get 1 -3 over x minus four over X squared Now simplifying this. We get limit as X approaches infinity, this will reduce to 5 -5 over X squared over 1 -3 over X -4 over experts. Since the experts cancel out and evaluating at the infinity we get 5 -5 over infinity Over 1 -3 over infinity -4 over infinity and knowing that Constant over infinity approaches zero. So this becomes zero. This becomes zero and this also becomes zero. We get the limit of the function as X approaches infinity equal to 5/1 or that's five

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

A function $ f $ is a ratio of quadratic functions and has a vertical asymptote…

01:13

A function $f$ is a ratio of quadratic functions and has a vertical asymptote $…

01:41

A function $f$ has a slant asymptote $y=m x+b(m \neq 0)$ if $\lim _{x \rightarr…

01:13

A function $f$ is said to have a removable discontinuity at $x=c$ if $\lim _{x …

01:13

A function $f$ satisfies the given conditions. Sketch a possible graph for $f$,…
Additional Mathematics Questions

08:56

What is the probability that a random sample size of 19 will have a mean ge…

01:03

Demand function

01:07

Calculus help

03:25

correct option??

01:04

Simplify to a single logarithm and then evaluate.
Please explain the step…

01:11

Simplify to a single logarithm and then evaluate.
Please explain the step…

02:01

Could you help with the power function below?

01:35

Help

01:32

Help

02:29

Help

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started