Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Let $ P $ and $ Q $ be polynomials. Find $$ \lim_…

05:41

Question

Answered step-by-step

Problem 54 Hard Difficulty

(a) Graph the function $$ f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5} $$
How many horizontal and vertical asymptotes do you observe? Use the graph to estimate the values of the limits $$ \lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} \hspace{5mm} \text{and} \hspace{5mm} \lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} $$

(b) By calculating values of $ f(x) $, give numerical estimates of the limits in part (a).

(c) Calculate the exact values of the limits in part (a). Did you get the same value or different values for these two limits? [In view of your answer to part (a), you might have to check your calculation for the second limit.]


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Daniel Jaimes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Daniel Jaimes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 6

Limits at Infinity: Horizontal Asymptotes

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

08:10

\begin{equation}
\begin…

01:12

(a) Graph the function
…

09:30

Graph the function given b…

00:49

(a) Graph the function $f$…

01:46

Limits from a Graph
(a)…

00:50

Limits from a Graph
(a)…

02:13

Graph the function $f(x)=\…

02:58

the graph of a function is…

00:38

the graph of a function is…

01:13

the graph of a function is…

03:24

The graph of a function f …

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81

Video Transcript

What this problem Number fifty four of this tour Calculus Safe Edition section two point six Party graft. The function F of X is equal to the square root of the quantity to X squared plus one. What about the quantity? Three X minus five. How many's horizontal and vertical asked meto see observed. And then we'll use the graft asked me to value these limits first, Let's take a look at the ground. This is thie graft function and we estimate there is one vertical as you do here approximately one and a half and we see there may be two separate horizontal aspirin, toots One maybe around one house positive one of and then another. Possibly it negative one half. And that's something we can I asked to meet here again The limits specifically, we're asking for those particular horizontal as toads. Here we have The limit is X approaches Infinity. That's the horizontal hasn't to here and sex purchase impunity. We see that dysfunction approaches approximately one half so well. All right, this here for now, approximately one half. And for this second limit as expert is negative Infinity. Ah, for the function we see that it approaches personal negative one half and again, we're just going to write thesis here to the side. OK, Herbie, calculating values of X give numerical estimates of the limits of party s. So what we do is we keep plugging in our general X values and for this function going towards infinity and larger and larger negative values towards the negative infinity. Here's a spreadsheet showing in the calculation of this function for a large, positive allies. And we see that function approaches value approximately equal to point four seven one four. Oh, fine. If we plug in Archer negative numbers towards negative infinity, we see that we approach the same limit. Just the negative. The opposite value. So four point four seven one four two four to some places seems like much better estimate. We're going to say that our estimates are now closer. Minus zero point four seven one four came Martine carefully. The exact values is limit in party, and they're asking, Did you get the same value or different values for these two limits? Okay, in order to calculate these limits exactly, we're going to use a bit of our, um Lim rules. Ah, one one one thing we could do. Take this function here, rewrite it as square root of X squared time to squared of two plus one over X squared. And this is just a factory and X squared numerator. Now it's important to realize that if X is positive, this value squared of X word eyes equal to X. If X is negative. Sequel to negative X That's what That again if X is positive, creative zero squared of X squared is positive. X. If X is less than zero, this term will be, well, two native X Um and this is important because we have to Domain's they were doing this limit on X course towards infinity is in the positive domain. So this functional be equal to X and for the other limit towards negative infinity dysfunction is equal to negative X on. That will change our answers slightly. Uh, for this positive limit, we'LL be able to reduce this to X. And if we divided by ex teach term we'LL hang out this limit two plus one or X squared, divided by three minus friend or ex And as its limit approaches infinity, the's terms go to zero. So our limit is actually equal to square root of two or three. And if we do it towards negative infinity, the second woman, remember, recall that this term becomes negative X and so are steps are approximately the same except with this negative in the front two plus one over X squared over three minus five over X. Each of these terms go to zero as experts Negative infinity on our final Ansari Cummings negative square, too over three. And if we were to calculate this exact value naked to score two to retreat, it is approximately equal to zero point for someone. For so in party with calculated the exact size of the limits Positive square in a two or three and they give us order to retreat. And those two are the horizontal incidents that we observed in our graph. Just it isn't very clear the way we crafted in this point. But if we expand closer to negative infinity and positive infinity, we should have confirmed that the horse on Jacinto are indeed are indeed at these eyes

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
84
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
53
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

08:10

\begin{equation} \begin{array}{c}{\text { (a) Graph the function }} \\ {f(x)=\…

01:12

(a) Graph the function $$f(x)=\frac{\sqrt{2 x^{2}+1}}{3 x-5}$$ How many horizon…

09:30

Graph the function given by $$f(x)=\frac{\sqrt{x^{2}+3 x+2}}{x-3}$$ a) Estimate…

00:49

(a) Graph the function $f$ whose rule is $$f(x)=\left\{\begin{array}{ll}3-x & \…

01:46

Limits from a Graph (a) Use the graph of $f$ to find the following limits. $$ \…

00:50

Limits from a Graph (a) Use the graph of $f$ to find the following limits. $$ \…

02:13

Graph the function $f(x)=\frac{e^{-x}}{x(x+2)^{2}}$ using a graphing utility. (…

02:58

the graph of a function is given. Use the graph to find the indicated limits an…

00:38

the graph of a function is given. Use the graph to find the indicated limits an…

01:13

the graph of a function is given. Use the graph to find the indicated limits an…

03:24

The graph of a function f is shown. Graphically determine whether the given lim…
Additional Mathematics Questions

02:58

A vertical pillar stands on the plain ground and is surmounted by a Flagstaf…

01:42

Which of the learning methodology applies conditional probability of all the…

02:14

Two cubes each with side 15 CM are joined end to end to form a cuboid find t…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started