Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

(a) If $ f(x) = x + 1/x $, find $ f'(x) $. (b) C…

05:19

Question

Answered step-by-step

Problem 33 Hard Difficulty

(a) If $ f(x) = x^4 + 2x $, find $ f'(x) $.
(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of $ f $ and $ f' $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Daniel Jaimes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Daniel Jaimes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 8

The Derivative as a Function

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

01:07

(a) If $f(x)=x^{4}+2 x,$ f…

03:19

(a) If $f(x)=x^{4}+2 x,$ f…

05:19

(a) If $ f(x) = x + 1/x $,…

06:50

(a) If $f(x)=x+1 / x,$ fin…

02:15

$\begin{array}{l}{\text { …

02:09

(a) If $ f(x) = e^x/ (2x^2…

04:20

(a) If $ f(x) = e^x/ (2x^2…

02:41

(a) If $f(x)=x \sqrt{2-x^{…

07:55

(a) If
f(x) = x2 ? 1/x…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67

Video Transcript

This is problem number thirty three of this tour. Calculus. Eighth edition, Section two point eight. Party if ever Vex equals X to the fourth plus two. Ex find every crime of X king. Let's use the Internet derivative definition. Find the paramedics limit as h approaches zero of this function of X. You know, you wanted a explosive JJ to That means explosive quantity to the fourth power. Plus two times actress H they were gonna subtract the function of X X to the fourth US to X is all divided by just each. Okay, good. Next step is to expand every term. Here we have the binomial to the fourth power. Um and then she read some other numbers as well. So this binomial to the fourth power will be X to the fourth. Because for X cubed H plus six x squared each squared plus for X h cute plus each to the fourth. That's just this final meal to the fourth power. And we're going to distribute the to here to the X and age plus two x plus to age. And they were in a subject exit. The fourth and two exits one okay, and this is all over H I'LL take a look at the numerator and see what we can cancel out a positive excellent forth and a negative x a fourth to those go away a positive to X and negative tricks and then an agent A dominator will cancel with an ancient each of the terms in the numerator since each of the terms of numerator have at least one each king. So what we're left with is the limit as h purchase zero of for X cubed less six ax squared each plus for eggs each square pas age cubed plus two Now, as a chair purchase zero each of these age terms a purchase zeros for those No way and we should be love with for X cubed plus two And this will indeed be our derivative of paramedics. Now we will verify and party by chicken or answer with party um to make sure that it's reasonable comparing the graph of f end of crimes were going plot both FX excellent forthwith to X And if Prem of X for Cuba for X cube two plus two and see if it is, this answer is reasonable. So we have pulled up at the next, which is in blue, and the derivative, which is in green here with their functions that we were given in which we found. And let's discuss whether this makes it, since the function F of X is a something similar to a problem. So on the left side it's decreasing, and when it's decreasing, its slope is negative, so as a very large negative slope. But then it gets less negative as it gets close to this minimum point. So that's what we see here. The function, the green function, the dirt of function is mostly negative. Insolent reaches is until it keeps approaching Weikel zero. So purchase of slope of Zero exactly where the minimum is. So this is consistent, the slope of zero at the minimum, so that is correct afterward, of the soap increases, the slip is positive for the remaining part, and this is shown on the slope craft, the derivative crafting green and what we see here is that the slope increases and then stays the same for a little bit and then increases again. And that's what explains his behavior here. This soap is positive initially and increases and becomes more positive until a point here. Actually, the slip seems a little constant exactly equal to around two. So the slopes ese constant for a little bit. But then it starts increasing again. Until this derivative that we found Brinkley is consistent with our two cafs shown here.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
83
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
52
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

01:07

(a) If $f(x)=x^{4}+2 x,$ find $f^{\prime}(x)$ . (b) Check to see that your ans…

03:19

(a) If $f(x)=x^{4}+2 x,$ find $f^{\prime}(x)$ . (b) Check to see that your ans…

05:19

(a) If $ f(x) = x + 1/x $, find $ f'(x) $. (b) Check to see that your answer t…

06:50

(a) If $f(x)=x+1 / x,$ find $f^{\prime}(x)$ . (b) Check to see that your answe…

02:15

$\begin{array}{l}{\text { (a) If } f(x)=x /\left(x^{2}-1\right), \text { find }…

02:09

(a) If $ f(x) = e^x/ (2x^2 + x + 1), $ find $ f' (x). $ (b) Check to see that …

04:20

(a) If $ f(x) = e^x/ (2x^2 + x + 1), $ find $ f' (x). $ (b) Check to see that …

02:41

(a) If $f(x)=x \sqrt{2-x^{2}},$ find $f^{\prime}(x)$ . (b) Check to see that y…

07:55

(a) If f(x) = x2 ? 1/x2 + 1 find f?'(x) and f?''(x). (b) Check to see …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started