Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

(a) Sketch the graph of a function that has two l…

07:21

Question

Answered step-by-step

Problem 13 Easy Difficulty

(a) Sketch the graph of a function on $ [-1, 2] $ that has an absolute maximum but no absolute minimum.
(b) Sketch the graph of a function on $ [-1, 2] $ that is discontinuous but has both an absolute maximum and an absolute minimum.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Oswaldo Jiménez
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Oswaldo Jiménez

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:46

Fahad Paryani

05:34

Chris Trentman

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 1

Maximum and Minimum Values

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:59

(a) Sketch the graph of a …

02:49

(a) Sketch the graph of a …

05:18

(a) Sketch the graph of a …

03:07

(a) Sketch the graph of a …

00:28

(a) Sketch the graph of a …

01:44

(a) Sketch the graph of a …

01:38

$$
\begin{array}{l}{\te…

06:17

(a) Sketch the graph of a …

03:28

13. (a) Sketch the graph o…

01:13

Sketch a graph of a contin…

02:28

Sketch the graph of functi…

01:15

(a) Sketch the graph of a …

00:50

$$
\begin{array}{l}{\te…

02:57

(a) Sketch the graph of a …

01:05

Sketch the graph of a func…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80

Video Transcript

We have two parts in this problem where a we sketch the graph of a function defined on the closed interval from negative 1-2. That has an absolute maximum, but no absolute minimum in part B. We sketch a graph of the function of the same defined on the same interval. That is this continues but has both an absolute maximum and an absolute minimum. So let's start with a Then we want function that has an absolute maximum but no absolute minimum on a close interval. The function gotta be discontinuous because we know where they stream value theory, that is the function is continuous and the interval disclosed it attains both an absolute maximum value and I've seen absolute minimum value. So fashion cavities continues to have these results. And we have a sketch here. This graph the function is defined on the whole interrupt from there. They want to that is all points. There has an image. We see that we have a discontinuity at this value here. Well, it's already I met that at this value, we have discontinuing because the images over here and the circle, this open circle means the image is not there, but here, up. And for that reason this function has no absolute minimum because the lowest point which should be this open circle here, but it's never attained. So there is no absolute minimum. But the function has an absolute maximum. In fact, on the endpoint, the left hand point negative one. And then the only way to achieve that in a close intervals that the function is discontinuous. So we have here. Okay, uh absolute maximum. Okay, no absolute anymore. F has to be he's continues because the interval where it needs to find his clothes and if the function where continues and the interval closed extreme value theory implies that the function attained its extreme values and the solution will be impossible. But in this case nothing said about the continuities as a function, we deduce we conclude that it has to be discontinuous in. So we draw a discontinuous graph having these properties of attaining an absolute maximum in this case at negative one and know what sort of minimum because the lowest point of the graph is not included in the graph. Yeah. Okay. So we have A and number B. We can we have used exactly the same graph. We have changed the image of this point here. The parade is the image of this number here was here up. But now he's here down. We moved the image only and only doing that. We have a graph of a function to find them negative 12. That has both an absolute maximum here. Yeah. And an absolute anyone here. Yeah. And it is continuous at this point here at this value. This means that the extreme value theorem is not an equivalence. That is if the function is defined and it's continuous is continuous and the close interval then it attains its extreme values. But if the function attains it's a string value doesn't mean automatically that it is continues and this is an example. So it's not an equivalence Is an implication of one only 1 direction. And we can say then that the scruff has a function they find another one to that is discontinues and, yeah, has both absolute maximum and absolute minimum and that's okay, one solution to the problem and given here.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
65
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
43
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:59

(a) Sketch the graph of a function on $ [-1, 2] $ that has an absolute maximum …

02:49

(a) Sketch the graph of a function on $ [-1, 2] $ that has an absolute maximum …

05:18

(a) Sketch the graph of a function that has a local maximum of $ 2 $ and is dif…

03:07

(a) Sketch the graph of a function that has a local maximum at 2 and is differe…

00:28

(a) Sketch the graph of a function that has a local maximum at 2 and is differe…

01:44

(a) Sketch the graph of a function that has a local maximum at 2 and is differe…

01:38

$$ \begin{array}{l}{\text { (a) Sketch the graph of a function that has a loca…

06:17

(a) Sketch the graph of a function that has a local maximum at 2 and is differe…

03:28

13. (a) Sketch the graph of a function on [~ 1, 2] that has an absolute maximum…

01:13

Sketch a graph of a continuous function with no absolute extrema but with a loc…

02:28

Sketch the graph of function on [-1, 2] that Is discontinuous but has both an a…

01:15

(a) Sketch the graph of a function on $[-1,2]$ that has an absolute maximum bu…

00:50

$$ \begin{array}{l}{\text { (a) Sketch the graph of a function on }[-1,2] \tex…

02:57

(a) Sketch the graph of a function on $[-1,2]$ that has an absolute maximum but…

01:05

Sketch the graph of a function that is continuous on an open interval $(a, b)$ …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started