Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The table gives the values of a function obtained…

06:07

Question

Answered step-by-step

Problem 7 Easy Difficulty

A table of values of an increasing function $ f $ is shown. Use the table to find lower and upper estimates for $ \displaystyle \int^{30}_{10} f(x)\, dx $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Stephen Hobbs
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Stephen Hobbs

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:39

Frank Lin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 2

The Definite Integral

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

03:37

A table of values of an in…

03:46

A table of values of an in…

01:56

A table of values of an in…

03:09

A table of values of an in…

03:33

Use the table of values to…

03:30

Estimating a Definite Inte…

06:07

The table gives the values…

00:29

The table gives the values…

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

given. If we go ahead and plot these points here, we get the following and we're interested in finding the integral from 10 2 30 of f of X. We're estimating using upper and lower estimates. So we're going to use rectangles and it's up to us whether we want to use the left endpoint or the right endpoint. Let's just draw what would happen if we use the left endpoint here for each of these. So we would get the following rectangles on that at this point, would end up giving us a lower estimate because we have more negative area than positive area. So let's go ahead and write that the width of each of these rectangles, by the way, is four. Because it jumps from 10 to 14, 14 to 18 for the X values there. So I just wanna for all these on land now, we could just do length times with an animal up, or we could just factor the four out front and then go ahead and multiplied by all the left on points. So negative 12 and then minus six minus two. So we just combine all the heights, um, plus one and plus three. We don't use eight and the lower estimate, so that would be it. And then if we evaluate that, that will end up giving us a total area of 60. Sorry, negative 64. Okay, and then the upper estimate. Let's go ahead and do that just to draw that out. Let's go ahead and use. Oh, I don't know, maybe Blue this time, so that would start on the right side and go up and over. So we're going to use eight as a height three of the height, one of the height than negative to as a height. Let me see if I did that right? Yep. And then negative six as a height. So those would be the blue Rectangles would be the upper estimate there because there's more positive area here. So factor of four, because each of the rectangles has a width of four and then starting on the right side. This time we're going to add everything except negative 12, because that did not determine the height. So eight plus three, well, swarm and then minus two and minus six and simplifying all of this. This will end up getting us positive 16. So in the end, we know that the true area lies somewhere in between negative 64 positive 16 since those of the lower and upper estimate.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

03:37

A table of values of an increasing function f is shown. Use the table to find …

03:46

A table of values of an increasing function $f$ is shown. Use the table to find…

01:56

A table of values of an increasing function $f$ is shown. Use the table to fin…

03:09

A table of values of an increasing function $f$ is shown. Use the table to find…

03:33

Use the table of values to find lower and upper estimates of $\int_{0}^{10} f(x…

03:30

Estimating a Definite Integral Use the table of values to find lower and upper …

06:07

The table gives the values of a function obtained from an experiment. Use them …

00:29

The table gives the values of a function obtained from an experiment. Use them …
Additional Mathematics Questions

01:28

write the following statement as equations 6.four time a number minus twenty…

04:15

what is the measure of the angle of an isosceles trapezoid if two of the ang…

00:17

what is the probability of tossing 4 coins and getting tails on all four

02:26

When the function gets closer and closer to 5 as the variable gets closer an…

02:05

What do you call -2m in the quadratic equation m²?-2²m - 15 =0?a constant te…

03:10

1.a party planner has a limited party budget for an upcoming event .if the c…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started