Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Suppose that $ F $, $ G $, and $ Q $ are polynomi…

03:37

Question

Answered step-by-step

Problem 72 Hard Difficulty

(a) Use integration by parts to show that, for any positive integer $ n $,
$$ \int \frac{dx}{(x^2 + a^2)^n}\ dx = \frac{x}{2a^2 (n - 1)(x^2 + a^2)^{n - 1}} + \frac{2n - 3}{2a^2 (n - 1)} \int \frac{dx}{(x^2 + a^2)^{n - 1}} $$
(b) Use part (a) to evaluate
$ \displaystyle \int \frac{dx}{(x^2 + 1)^2} $ and $ \displaystyle \int \frac{dx}{(x^2 + 1)^3} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 4

Integration of Rational Functions by Partial Fractions

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:25

(a) Use integration by par…

03:16

Let $n$ be a positive inte…

01:36

Let $n$ be a positive inte…

09:06

If $n$ is a positive integ…

02:55

(a) Make an appropriate $u…

03:41

Use integration by parts t…

07:46

Show that for any positive…

01:04

If $I_{n}=\int\left(x^{2…

04:55

(a) Make an appropriate $u…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

Let's use integration by parts toe Prove the following formula and let's go ahead and denote the integral on the left. But I am so we see the end shows up on the right. Is the exponents in the denominator? So for our integration, my parts let's make this choice for you then do you? Is negative to an ex that you think the chain rule from calculus TV is the ex. So then, by using immigration my parts we know the formula. You ve todo So in our case, lets go out and write that out. Look, no, cancel those double negatives. Pull off the two one and that here are always the following trick. I'LL rewrite this as x squared plus a squared minus a squared And then I'll split it this up into two in a girls. So this is then we have X squared plus a square. Now we see that we could cancel one of these terms Run And then for the last in a girl Let's pull out that a square. We still have that too in from here. Good. And then in a girl one over x squared, plus a square. Now notice that we can rewrite these remaining two in a girls in terms of this interval right here. So this integral one over X square, plus a square to the end, is just I am. And here would you have him and plus one that will be I and plus one. So let's go to the next patient. Write this out in the first term here. This is from our UV two and to end I am minus two and a squared I and plus one that's good and soft Fur I n plus one the smiles over here. So we have this one minus to end. Yeah, no. And what's good and simplify this. Cancel all those double those minus signs and then here. Okay, so now there's new formula. This hole's for any end. So instead of using the n plus one on the left, let's just replacing within. So here, just since this works for in the end, let's replace and with and minus one that here is the left hand side just becomes I am the right hand side. Just ride it out. So this is the numerator and then on the denominator to a square. But this time and minus one going on to the next page. Simplify each term here, that's our first term. And then our second term Teo So remember, on the left this's all equal toe I end And then here on the left, I could just rewrite that first her. That's the term that we wanted from the formula. We're basically done here. The last step is it. Just replace Pull off this constant here and then replace i n minus one with the definition as thie Integral. So that's a DX X squared plus a squared all to thee and minus one power. And that's the formula that we attended on proving Now let's go ahead and start on part B. So let me go to the next page here. So we'LL plug in for actually let me just write out two Step the integral here for part B one over X squared plus one square DX. So here we see that take was one and then we have an equals two. So let's fight and use this in our formula. So we get X over to X squared plus one and then going to the second term here we plug in and equals two again. So we get one half and then in a girl, one over X squared plus one. Now, if the Senate rules bother you feel free to do it. You some here, our strengths up. Excuse me? No. And we could simplify this one half and then we have our Tana Vicks plus our constancy. Now there's two intervals in part B. This is our answer for the first animal. And we could actually use this answer from the next interval. So we're still in part be here. But the next integral this time we have X squared plus one. Cute. So using the formula from part eh? This time and equals three equals one. So we have X over We'LL have two times two x square plus once where and then the second fraction two times one times two one over one plus x clear square My notice this integral That just popped out. That's the interval we just evaluated on the last stage. So here was just plug in our answer from the other the previous part of part B And then we have three over four and then we can replace this by previous age X to X squared plus one and then we also had one half. It's an inverse X and let's got and add that constant of integration, see, and very in. And that would be our answer for the second in a girl party and that used the earlier part of the same problem. B. But it also used the formula from party, and that's our final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:25

(a) Use integration by parts to show that, for any positive integer $ n $, $$ …

03:16

Let $n$ be a positive integer. Use integration by parts to show that $$ \int x^…

01:36

Let $n$ be a positive integer. Use integration by parts to show thas $$\int x^{…

09:06

If $n$ is a positive integer or zero, show that $\int_{-1}^{1}\left(1-x^{2}\rig…

02:55

(a) Make an appropriate $u$ -substitution of the form $u=x^{1 / n}$ or $u=(x+a)…

03:41

Use integration by parts to prove that for any positive integer $n$ $\int \sin …

07:46

Show that for any positive integer $n$ $$ \begin{array}{l} \int_{0}^{1} e^{x^{2…

01:04

If $I_{n}=\int\left(x^{2}+a^{2}\right)^{n} \mathrm{~d} x$, show that $I_{n}=\…

04:55

(a) Make an appropriate $u$-substitution of the form $u=x^{1 / n}$ $u=(x+a)^{1 …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started