Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

At a time when mining asteroids has become feasible, astronauts have connected a line between their $3500-\mathrm{kg}$ space tug and a $6200-\mathrm{kg}$ asteroid. Using their tug's engine, they pull on the asteroid with a force of 490 $\mathrm{N}$ . Initially the tug and the asteroid are at rest, 450 $\mathrm{m}$ apart. How much time does it take for the tug and the asteroid to meet?

Get the answer to your homework problem.

Try Numerade free for 7 days

Like

Report

64$s$

Physics 101 Mechanics

Chapter 4

Forces and Newton’s Laws of Motion

Newton's Laws of Motion

Applying Newton's Laws

Simon Fraser University

University of Sheffield

McMaster University

Lectures

03:28

Newton's Laws of Motion are three physical laws that, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows: In his 1687 "Philosophiæ Naturalis Principia Mathematica" ("Mathematical Principles of Natural Philosophy"), Isaac Newton set out three laws of motion. The first law defines the force F, the second law defines the mass m, and the third law defines the acceleration a. The first law states that if the net force acting upon a body is zero, its velocity will not change; the second law states that the acceleration of a body is proportional to the net force acting upon it, and the third law states that for every action there is an equal and opposite reaction.

03:43

In physics, dynamics is the branch of physics concerned with the study of forces and their effect on matter, commonly in the context of motion. In everyday usage, "dynamics" usually refers to a set of laws that describe the motion of bodies under the action of a system of forces. The motion of a body is described by its position and its velocity as the time value varies. The science of dynamics can be subdivided into, Dynamics of a rigid body, which deals with the motion of a rigid body in the frame of reference where it is considered to be a rigid body. Dynamics of a continuum, which deals with the motion of a continuous system, in the frame of reference where the system is considered to be a continuum.

04:35

At a time when mining aste…

02:32

08:36

An astronaut of mass $60.0…

06:30

A spherical asteroid with …

03:07

01:33

An asteroid is moving alon…

05:28

Professional Application

03:32

(a) What is the escape spe…

03:03

A 60.0 -kg astronaut insid…

01:19

After a spacewalk, a $1.00…

0:00

A "doomsday" ast…

01:12

04:18

Two piloted satellites app…

05:24

Consider an asteroid with …

08:01

Two asteroids of equal mas…

according to Newton Start Law. That tug is actually being pulled by the asteroid. We force off 490 new terms. Now we can use Newton's second law on each off them separately to calculate acceleration off them separately. So for the asteroid, we have the following. The Net force acting on the asteroid is equal to its mess, finds its acceleration. Let's call it a for acceleration off the asteroid. Then the net force is the coast in 490 noodles. The net force acting on the asteroid on Lee and these these equals two seeks to double zero times acceleration off the asteroid. Then the acceleration off the asteroid is the coast to 490 divided by 62 double zeros. There is a simplification that can be done here, and then we have that acceleration off. The asteroid is a close to 49 divided by 620 which is approximately 0.8 Reader spur second squared, then the position off the asteroid as a function of time. Is it cost, too? Its initial position. Plus it's initial velocity times the time, plus its acceleration times, the time squared, divided by truth. But note that its initial position, we can say, is it close to zero. So here is Europe. Its initial velocity is the cost of zero because it meetings at rest. So the only term that is left is the last one. So for the asteroid, we have the following the asteroid position as a function of time. Is it cost too? 0.8 times T squared, divided by truth which results in 0.4 times t squared. And only that Now let me organize this information here and do the same thing for the tow. Nice. Now we repeat this calculation for the tug. So for the time you have the following the net force acting on the tug is he goes to its mass times its acceleration that we call it 80 then Oh, okay. One more thing. Let me define everything that is pointing to the right as things never that are pointing towards the positive direction on everything that is pointing to the left will be pointing to the negative direction as a consequence. Then the net force that is acting on the tug is he goes to minus 490 because it's pointing to the negative direction and its Sequels. True. 35. The zeros, the mass off the tile times acceleration off the hook, Then acceleration off the Turk is because two minus for 90 divided by 35 double zeros. That is a simplification, and this gives us an acceleration off approximately minus 0.14 meters per second squared. Now we can calculate the position off the tug as a function of time as follows. The position of the child has a function off time. Is he close to initial position? Plus, it's initial velocity times time plus its acceleration times Time squared, divided by two. Its initial position is a question for 150. Its initial velocity easy, close to zero. Then the position of the drug is a function of time. Easy, close to 450 minus. Because the acceleration is negative. 0.14. He's weird, divided by truth, and we can solve the second fraction to get the following 450 minus 0.0 of 70 squared. No, Maybe you're the nice to board again. Fine. So now we have to solve the meeting, so when they meet they you'll be at the same position. So when they meet as a will, the cost to SD So 0.0 for T squared we'll be close to 450 minus 0.0 70 squared. Now we have to sew for heat. We can do this by sending this term to the other side first. So we have 0.0 40 squared plus 0.0 70 square being because to 450 then zero point eleventy squared is equal to 450 show he squared is equal to 450 divided by 0.11 and then he is He goes to the square it off 450 divided by 0.11 which is approximately 64 seconds

View More Answers From This Book

Find Another Textbook

Numerade Educator

02:59

Figure below represents the total acceleration of a particle moving clockwis…

12:30

REMARKS Because the umpact inclastic, Would be Incorrect t0 cquate Initial k…

03:55

35.0-degree ang from the horizontal: A 215-N box is placed on an incline tha…

01:30

5.2 THE CARNOT CYCLE The operation of an arbitrary heat engine is represente…

04:16

Consider the circuit shown in the figure_ short time after closing the switc…

04:52

Item 15Susan's 13.0 kg baby brother Paul sits on mat: Susan pulls t…

01:56

A 61.0kg skier on level snow coasts 15 m to stop from speed of 4.0 m/s. Usin…

01:41

Acar on a roller coaster is moving at the speed of 10 m/s at an elevation of…

02:09

Pa) 2 X) PressureQ0[ 200 Volume (x [0-6 m' )The graph above of …

01:37

An infinitely long dielectric cylinder . of radius R contains uniform charge…