Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Determine whether the geometric series is converg…

02:32

Question

Answered step-by-step

Problem 20 Easy Difficulty

Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
$ 2 + 0.5 + 0.125 + 0.03125 + \cdot \cdot \cdot $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 2

Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

01:34

Determine whether the geom…

02:09

Determine whether the infi…

01:22

Determine whether the geom…

03:04

Determine whether the geom…

01:55

Determine whether the geom…

00:44

$17-26$ Determine whether …

01:25

Determine whether the seri…

02:17

Infinite Geometric Series …

01:23

Infinite Geometric Series …

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92

Video Transcript

determine whether that she had metric. Siri's is converting our diversion, and if it's conversion, find this home. That won't be a problem because we do have a formula for geometric Siri's and here they're giving you the Siri's. So before we look at the serious and detail, let's just go to the side and recall the definition for geometric. This means that you have Ah, some of the form A are to the end. Some people might right they are and minus one. It doesn't matter here whether and also I'm not writing the starting points here, it could be one. It could be zero it actually, it could be any number of I won't even write anything down there. Basically, the idea is each time and increases by one. You're multiplying by the same number each time, and it's always are r. So in this problem they're telling what we know that this is geometric. What we have to find out what our is and what is our A. So here to find the r noticed that if you take this if you take one term and you divided by the previous term, your leftover with are so If you ever want to find our and from a geometric series, just take some term that you see anyone that you like and divided by the one right before. For example, Here I look at the seconds or I'm divided by the one right before it, so I get a half over to which is the fourth. So that's my r and you could check. You could use this for any two values you could use instead of using to one point five. You could use point five and point one two five. If you divide point one two five over playing five, you'LL still get a fourth, so that is our are. And then here we can go ahead and use a to just be to that first term. So here, since our satisfies the following inequality, it's less than one. The Syrians will converge, So this is the condition that you need for convergence. Otherwise diverges even if it's equal to one diverges. Now let's use our formula for the geometric series. So here we have a over one minus R. Or I think the easiest way to memorize this is the first term. If you use this formula here it. This won't depend on what you're starting Point is, And in our problem, that's just two over one minus a fourth. So we have to over three over four, and then you could go ahead and simplify that Teo eight over three. And that's your final answer for this geometric series.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
94
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
54
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

01:34

Determine whether the geometric series is convergent or divergent. If it is con…

02:09

Determine whether the infinite geometric series is convergent or divergent. If …

01:22

Determine whether the geometric series is convergent or divergent. If it is con…

03:04

Determine whether the geometric series is convergent or divergent. If it is con…

01:55

Determine whether the geometric series is convergent or divergent. If it is con…

00:44

$17-26$ Determine whether the geometric series is convergent or divergent. If i…

01:25

Determine whether the series is convergent or divergent. If it is convergent, f…

02:17

Infinite Geometric Series Determine whether the infinite geometric series is co…

01:23

Infinite Geometric Series Determine whether the infinite geometric series is co…
Additional Mathematics Questions

01:58

Graphing Linear Inequality in Two Variables
Inatructions: Using a graphin…

02:48

Find the perimeter of AUVW . Round your answer to the nearest tenth if neces…

04:23

23 - 24. Given the figure below, the relationships among chords, arcs, centr…

02:56

A B and €C are three similar solids
The surface area of A is 24cm? The su…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started