Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Determine whether the geometric series is converg…

02:13

Question

Answered step-by-step

Problem 25 Easy Difficulty

Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {e^{2n}}{6^{n - 1}} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 2

Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Heather Zimmers

Oregon State University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:13

Determine whether the geom…

01:14

Determine whether the geom…

02:32

Determine whether the geom…

02:11

Determine whether the geom…

02:38

Determine whether the seri…

03:45

Determine whether the geom…

02:36

Determine whether the geom…

03:34

Determine whether the seri…

03:23

Determine whether the geom…

01:31

Determine whether the geom…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92

Video Transcript

Let's determine whether is a geometric Siri's below conversions of beverages and then if it's converges if it converges, we'LL go and find the sun. So first geometric series or easiest to describe when the written in the following form. Because then we know that this thing will converge if absolute value are is less than one. Otherwise it'LL diverge. If absolutely all you are is bigger than your equal to one. So let's find our but to find are we need to get it in this form over here salutary rightists. So I see that the numerator as either of the two and up there apps which I could also actually rewrite that Let me rewrite This is East Square to the end. What I'm trying to do here is get the numerator to the end Power I just did that and also on and the power and the denominator. So what I'LL do here is all right this No. And then I'll just multiply six and then divide by six and that's just six to the end over six. And then I could go ahead and write that as the six down here will come up into the numerator. So six times he swear to the end over six to the end. Now, because I have both of these terms to the end power, I could just pull off that and and write the fraction first and then I have the end power. So now we see that a equal six our equals e squared over six. So we have to approximate with his equals two to determine whether or not this is Weston one or bigger than one. So e to do this, maybe without a calculator. If you have a rough idea of what years he's about two point seven. So here, if we got in square E, you're getting a fell seven point three more or less. And then there we see that this is bigger than six. So this implies east weird over six is better than one. So we have our equals eastward over six bigger than one. So the siri's diverges. And again we're just using this fact here, which I'll circle on blue for geometric series. So diverges and that's your final answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
128
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:13

Determine whether the geometric series is convergent or divergent. If it is con…

01:14

Determine whether the geometric series is convergent or divergent. If it is con…

02:32

Determine whether the geometric series is convergent or divergent. If it is con…

02:11

Determine whether the geometric series is convergent or divergent. If it is con…

02:38

Determine whether the series is convergent or divergent by expressing $s_{n}$ a…

03:45

Determine whether the geometric series is convergent or divergent. If it is con…

02:36

Determine whether the geometric series is convergent or divergent. If it is con…

03:34

Determine whether the series is convergent or divergent by expressing $s_{n}$ a…

03:23

Determine whether the geometric series is convergent or divergent. If it is con…

01:31

Determine whether the geometric series is convergent or divergent. If it is con…
Additional Mathematics Questions

04:19

A new diagnostic centre, with laboratories and computer-imaging equipment; i…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started