Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Determine whether the series converges or diverge…

01:48

Question

Answered step-by-step

Problem 29 Easy Difficulty

Determine whether the series converges or diverges.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {1}{n!} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 4

The Comparison Tests

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

03:02

Determine whether the seri…

00:49

Determine whether the seri…

02:39

Determine whether the seri…

01:48

Determine whether the seri…

02:18

Determine whether the seri…

03:51

Determine whether the seri…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46

Video Transcript

let's determine whether the Siri's converges or diverges. So, first of all, I'LL claim that this is a This sum is less than or equal to the sum from one toe infinity of one over and minus one time's end. Now the reason for this is because, and factorial is equal to one times to all the way up Tio. And so this means that in factorial is larger than and minus one times in and Sense and factorial is larger. But over here we see it's in the denominator so the inequality will go in the other direction. So in other words, this fraction is larger because it's denominator smaller. That's what this show's over here. And then now we can use comparison test. But in order to do so, we should see that this Siri's comm urges. So for this one, there are many ways to go. You could try to use the Lim comparison test, so we're looking at the Siri's that's boxed in red. So let that let this term B an and then let it be in, just be one over and square. Then let's look at the limit of a N over beyond this is the limit comparison test. That's just and swear over and times and minus one. And let's evaluate this. You could use low Patel's rule here if you want. Instead, let me just go ahead and divide top and bottom bye and square. And then I get limit one over one, minus one of her head. Now let's go ahead and take that limit one minus one one over one minute zero, which is just one. And then we know that this Siri's will converge. That tells us that this Siri's one over and minus one times in converges. So this is using the limit comparison test. L see Teo abbreviate that now we can use the direct comparison test to explain why our Siri's circled on blue convergence. So, since first of all, we should point out, as the theory states, that we're dealing with a Siri's with positive terms so sense this one over and Factorial is always positive. We've shown that this Siri's converges by the direct computers and test. So this is not the limit comparison. This is the usual comparison. So we used both comparison test in this problem, but we only use the Lim a comparison to show that the larger Siri's convergence and once we realize that by the direct comparison that tells us that our original series converges and that's your final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
178
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
75
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

03:02

Determine whether the series converges or diverges. $ \displaystyle \sum_{n = …

00:49

Determine whether the series converges or diverges. $\sum_{n=1}^{\infty}\left(1…

02:39

Determine whether the series converges or diverges. $\sum_{n=1}^{\infty} \frac…

01:48

Determine whether the series converges or diverges. $ \displaystyle \sum_{n = …

02:18

Determine whether the series converges or diverges. $ \displaystyle \sum_{n = …

03:51

Determine whether the series converges or diverges. $ \displaystyle \sum_{n = …
Additional Mathematics Questions

04:25

2. (15 pts:) Find each limit analytically (not numerically). NO DECMMALS a.)…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started