Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Determine whether the series converges or diverge…

03:18

Question

Answered step-by-step

Problem 19 Easy Difficulty

Determine whether the series converges or diverges.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {n + 1}{n^3 + n} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 4

The Comparison Tests

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:17

Determine whether the seri…

01:19

Determine whether the seri…

03:30

Determine whether the seri…

00:58

Determine whether the seri…

01:06

Determine whether the seri…

01:35

Determine whether the seri…

01:05

Determine whether the seri…

01:12

Determine whether the seri…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46

Video Transcript

to determine whether the Siri's converges or divergence. So let me call this term here a end and let me also define being two B and O ver and cubed, which I could write is one over and square. And the reason I wrote it in this farm over here is im just looking at the largest term in the new braver and also the larger term in the denominator, and I just simplified that. So here I'm setting myself up to use the Lim comparison test. So first we have to evaluate this Kwan this quantity, Let's call it. See, we have to look at and over Bien. Then if we end up finding out that this number C is larger than zero and it's finite, so it's less than infinity. Then, instead of answering conversions or diversions for our own problem, we could instead compare with the easier problem of one over and swear. And we already know just by looking at it that this Siri's will converge because it's a P series with P equals two. So hopefully when we evaluate this limit, it satisfies this inequality, and then we can use the test. So let's go ahead and fancy and over B end. So not that in your problem. And Overby End is just a and over one over and square and that's just end square And so here licious multiply our a n by and square and I should have written the limit This is out in the front limit is n goes to infinity Now let's go ahead and look inside the numerator Actually just a denominator here and you take the large on our end And then we'll divide It's happened bottom bye and puke So that's one on top and then one on the bottom as well. And when we do this no. So this is all inside of the limit. So then any cubed divided by in Cuba was won and then and squared, divided by in Cuba was won over and and similarly in the denominator, this is what we have now Go ahead and take that limit. Let an approach infinity so that one over and and one over and squared both go to zero and we just have one plus zero over one plus zero and that's equal to one. So c equals one does satisfy the inequality that we need. So we can therefore a Clive Limit comparison test sense the sum of the beings which was won over and swear converges. Why does this one converge? This's just pee test. And then, in your case, P equals two. Therefore, let's not use a semi colon there. Since this happens, this converges by Lim comparison test Our Siri's also conversions. So you're Siri's, which was N plus one over in Pune. Plus end will also converge, and that's your final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
94
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
54
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:17

Determine whether the series converges or diverges. $$ \sum_{n=1}^{\infty} \fra…

01:19

Determine whether the series converges or diverges. $\sum_{n=1}^{\infty} \frac{…

03:30

Determine whether the series converges or diverges. $ \displaystyle\sum_{n = 1…

00:58

Determine whether the series converges or diverges. $ \displaystyle \sum_{n = …

01:06

Determine whether the series converges or diverges. $$ \sum_{n=1}^{\infty} \fra…

01:35

Determine whether the series converges or diverges. $\sum_{n=1}^{\infty} \frac{…

01:05

Determine whether the series converges or diverges. $$ \sum_{n=1}^{\infty} \fra…

01:12

Determine whether the series converges or diverges. $$ \sum_{n=1}^{\infty} \fra…
Additional Mathematics Questions

02:01

A computer can do an addition in 5.2* 10 15 $ How long does it take to perfo…

03:06

The diagram shows @ rectangle inside & semicircle, The rectangle has dim…

01:21

2. A certain invasive species of fish was introduced in a small lake and the…

02:05

In circle M with mLLMN 150 and LM = 5 units find area of sector LMN. Round t…

01:15

Dylan is thinking of a quadrilateral,
It has at least one pair of paralle…

01:56

5) reflection acrOss x =-3 Ay

02:02

Determine whether QR and ST are parallel, perpendicular, or neither. pts) Q(…

00:53

4,When triangle ABC is reflected across line AB, the image is triangle ABD. …

01:45

Calculate the length of edge AD in the triangle-based pyramid below:
Give…

01:03

eoucaton
Question 1 of 1
Which angle has sides DB and DC ? Select all …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started