Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Alabama Instruments Company has set up a producti…

05:21

Question

Answered step-by-step

Problem 85 Hard Difficulty

Dialysis treatment removes urea and other waste products from a patient's blood by diverting some of the bloodflow externally through a machine called a dialyzer. The rate at which the urea is removed from the blood (in mg/min) is often well described by the equation
$$ u(t) = \frac{r}{V} C_0 e^{-rt/V} $$
where $ r $ is the rate of flow of blood through the dialyzer (in mL/min), $ V $ is the volume of the patient's blood (in mL), and $ C_0 $ is the amount of urea in the blood (in mg) at time $ t = 0 $. Evaluate the integral $ \displaystyle \int^{30}_0 u(t) \, dt $ and interpret it.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Michael Cooper
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Michael Cooper

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:05

Frank Lin

01:36

Amrita Bhasin

03:45

Bobby Barnes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 5

The Substitution Rule

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
LW

Luke Weinel

April 14, 2020

what happened to the r/v from the original equation? is that somewhere cancelled out? if so where?

Top Calculus 1 / AB Educators
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

Dialysis treatment removes…

0:00

Dialysis treatment removes…

00:18

Dialysis treatment removes…

0:00

Dialysis treatment removes…

06:51

Dialysis treatment removes…

02:42

Dialysis treatment removes…

05:08

Dialysis treatment removes…

01:13

Dialysis treatment removes…

13:06

Dialysis removes urea from…

00:52

Dialysis treatment removes…

10:21

Dialysis time Hemodialysis…

04:21

Dialysis A model that esti…

05:19

Kidney Dialysis Hemodialys…

07:58

Dialysis treatment adequac…

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 94

Video Transcript

in this exercise we're asked to consider a situation of dialysis. And we are given a function. You represents the amount of your area in a patient's blood in milligrams at a given time t where time is minute. Sorry. It took me a lot to verify. And the equation or in the problem but it says that. Uh huh. The rate is milligrams per minute. So time is in minutes. R. Is the rate of flow of blood through the dialogue. This machine. Mhm. Yeah. Oh mm B. Is volume of the patient's blood in milliliters and Cease of zero is equal to the initial concentration of Yuria and blood. So looking at this R. Is the rate of flow divided by the volume. So that gives me the amount of blood that can how much of the blood flows through the ratio of the rate to the volume of the patient's blood. So what percentage of the patient's blood or what ratio of the patient's blood is flowing through the machine each minute times the initial concentration times he raised to the power of negative are times time divided by volume. So um the more time that passes, the smaller this exponential. Um Yes exponential expression is the less the higher percentage or the less of the initial concentration remains. And then we are asked to evaluate Yeah you can't a girl. Mhm. From zero. Yeah. Uh huh. Yeah. Yeah. 30. I believe this big away the integral from time equals 02 tiny those 30 minutes of this dialysis dialysis from shen with respect to T. Yeah and explain what I mean. So this integral written in terms of the actual equation actually gets simplified a little bit because our and the and see subzero which is the initial concentration are all constants in this situation. The only thing that is changing is time, time is my variable of integration. And so all of that can fall outside. Uh huh. The actual integral. And then I'm evaluating the furniture of 2 30. The definite it's a girl E. To the power of negative R. T over B. With respect to T. Yeah. Yeah. Well and when I do that that is going to require us to do some substitution. So everybody to switch to just being able to draw wrong. Yeah. I'm gonna change my color to black. It's so the problem is I've got this weird funky exponents in my exponential situation. I know how to find the integral of E. To the X power dx is just itself. Right? The exponent here has more than just the variables. I am going to do a substitution. I'm going to call function you that whole exponent negative. RT divided by V. And in order to evaluate an integral I need to know what the derivative of that is. So do you is just going to be negative are over being DT to make the substitution a little easier because I have a D. T. Here. I am going to find out what D. T. Equals by rewriting that. Mhm. So if I divide both sides by negative are over B. I get the DT equals negative B. Over our. Do you? And now I am going to substitute negative Rt over be for you. And I am going to substitute. No. Yeah T. T. With negative V. Over R. D. Use put the DT here and change that. I'm going to put to you here. I'm gonna rewrite all of this. Mm. Yeah. So I still have the R. I still have to be I still need the initial concentration. I am still evaluating an integral. Yeah I'm going to come back to the limits of integration in just a second and I still have but instead of raising it to the power of negative RT over mean I'm going to raise it to the U. Power. And instead of D. T. I now have negative. This is multiplied by negative being over R. D. T. Yeah simplifying that a little bit negative. The over our is still a constant negative B. Over our times are over. B cancels each other out. So. Uh huh. Look what happens to all of that. So this are going to cancel how this are because our divided by R. Is one. This baby is going to cancel how the Mississippi because a divided by B. Is one the negative is a constant. So I can go outside and can rewrite all this as. Uh huh negative. I still have my initial concentration of the definite and to grow you know where that came from. Get rid of it. The definite integral of he to new power. Okay that should be D. You because I rewrote D. T. As negative V. Over R. D. Use this was negatively over hard to do instead of D. T. That makes this. Yeah. But then I've got these limits. I have changed my variable of integration from T. T. You. So I need to change the limits from T. T. You as well. If T equals zero you is going to equal negative. Are times T divided by a Z. Are divided by the negative are times zero is zero divided by via zero. So when T equals zero U. Equals zero. When T equals 30 you is going to equal negative are times 30 divided by the so my upper limit of integration is going negative. 30? Mm hmm. Over. Okay. Got Okay give us me definitely integral that I can that I can find the anti derivative for I know that the anti derivative of each of the U. D. U. Is just each of the U. Power. So this all becomes negative. Initial concentration keeps Sorry about that initial concentration times. Yeah. Uh huh. Yeah. To the youth power Evaluated over the integral from zero To -34. Right? Yes. And then evaluating that I still have initial consultation tom. Uh huh. Okay. Very quickly being as one else today, times Plugging the negative 30 are over be into. Each of the power gives me me to the negative. Uh huh. There are over B. Yeah Plugging zero into the eat the U. power anything to visit all. Power is one. I can multiply the initial concentration through. And given the initial concentration of syria and the blood minus. These are the power of the amount of time. 30 minutes times are divided by the total volume of blood. And this will give me the total milligrams of syria that remain in the patient's blood. The initial amount of area and the patient's blood minus the amount of your area that has been removed. Which is based on the rate Of the patient's blood flowing through. As a ratio to the total amount of patients blood. Multiplied by the amount of time that has passed 30 minutes. Oh okay. Uh huh.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

Dialysis treatment removes urea and other waste products from a patient's blood…

0:00

Dialysis treatment removes urea and other waste products from a patient's blood…

00:18

Dialysis treatment removes urea and other waste products from a patient's blood…

0:00

Dialysis treatment removes urea and other waste products from a patient's blood…

06:51

Dialysis treatment removes urea and other waste products from a patient's blood…

02:42

Dialysis treatment removes urea and other waste products from a patient's blood…

05:08

Dialysis treatment removes urea and other waste products from a patient's bloo…

01:13

Dialysis treatment removes urea and other waste products from a patient's bloo…

13:06

Dialysis removes urea from a patient's blood by diverting some blood flow exte…

00:52

Dialysis treatment removes urea and other waste products from a patient's blood…

10:21

Dialysis time Hemodialysis is a process by which a machine is used to filter ur…

04:21

Dialysis A model that estimates the concentration of urea in the body for a par…

05:19

Kidney Dialysis Hemodialysis, a method of removing waste products from the bloo…

07:58

Dialysis treatment adequacy (a) The quantity $K t / V$ in Exercise 53 is somet…
Additional Mathematics Questions

01:21

A company is supposed to pack ninety-three thousand four hundred eggs and de…

01:34

if a is equal 5/8 and b=3/16 find a+b is a*b

01:28

The length and breadth of a rectangular garden is 50 m and 30 m respectively…

01:04

find the value of polynomial 5x - 4x square +3 when x=-1

01:40

Find the additive inverse of the sum of -14 and 18.

02:14

in an Auditorium 1482 + X chairs are placed such that the number of rows is …

01:22

Harish save Rs 900 out of a total monthly salary of 14400 find the percentag…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started