Enroll in one of our FREE online STEM bootcamps. Join today and start acing your classes!View Bootcamps

University of California, Berkeley

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86

Problem 11

Estimating a Limit Numerically In Exereises $11-18$ ,create a table of values for the function and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result.

$\lim _{x \rightarrow 1} \frac{x-2}{x^{2}+x-6}$

Answer

$$\lim _{x \rightarrow 1}\left[\frac{x-2}{x^{2}+x-6}\right] \approx 0.25$$

You must be logged in to bookmark a video.

...and 800,000 more!

## Discussion

## Video Transcript

Okay, so we're asked to create a listen, let's of values or a crisp table of the show. What the result of our women has experts is one of the functions. And so let's start with the 2.9. So we get 0.9 months to over, or a point guard plus 0.0.9 point six, which is approximately 0.25641 Now an X is equal to 0.99 our function plugging it in 0.99 for X we get. This is approximately 8.256 and then one actually good 10.999 Our function approaches 0.256 Okay, No, it's a pro approach from the right hand side. The next is equal to 1.1 our function approach it point 2439 when X is equal to one quick one function is approximately 0.2494 And when X is equal to 1.1 our function is approximate same 0.2499 So, based on what we're approaching from our lifetime side and our right hand side, we can say that our function is approaching approximately 0.25 This is approximately points