Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Question

Answered step-by-step

Evaluate the indefinite integral.

$ \displaystyle \int \sinh^2 x \cosh x \, dx $

Video Answer

Solved by verified expert

This problem has been solved!

Try Numerade free for 7 days

Like

Report

Official textbook answer

Video by Amrita Bhasin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

01:11

Frank Lin

Calculus 1 / AB

Chapter 5

Integrals

Section 5

The Substitution Rule

Integration

Campbell University

Oregon State University

Idaho State University

Lectures

05:53

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

40:35

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

00:39

Evaluate the indefinite in…

01:59

Evaluate the definite inte…

01:43

Calculate the integral.

01:02

Find the indefinite integr…

00:35

00:44

Find the integral.$$

01:23

Evaluate the integral.…

we know that you iss sign of age acts. Which means that de Axe is one of her co sign h of X cause I've ever used the derivative times to you. Which means we have the integral of use for times co signing jukebox terms. One over Costa nature backs. Do you? Which is the integral of you squared? Do you? Which is in the power role is 1/3 you cubed and then substituting in? Are you? We end up with the final solution.

View More Answers From This Book

Find Another Textbook