Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral by interpreting it in terms…

01:52

Question

Answered step-by-step

Problem 38 Hard Difficulty

Evaluate the integral by interpreting it in terms of areas.

$ \displaystyle \int^5_{-5} \bigl( x - \sqrt{25 - x^2} \bigr) \, dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Robert Daugherty
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Robert Daugherty

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:41

Frank Lin

01:35

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 2

The Definite Integral

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

$$
\text { Evaluate the…

01:04

Evaluate the following int…

05:52

Evaluate the integrals.

03:37

Calculate the integral.

01:26

Evaluate the following int…

01:50

$35-40$ Evaluate the integ…

04:47

Use integration by parts t…

03:03

Use a change of variables …

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

Problem 38 here were asked to give an exact value for this integral in terms of area. So geometrically looking at the area of each of these functions. So think of this as you've got two functions, you've got to function y equals x. And then you have another function. Why equal 25 minus x squared square root. So let's look at these separately. So the function Y equals X. What does that look like? Well, you should know pretty well that is the line that goes straight through the origin. And so it's at the point -5 -5 5 five. And so if you think about it, the area here, so ah when you sum this up, this is gonna be what um negative 25. So sorry, it's gonna be 25 back up. Sorry, You look at negative areas under the axis. So five times five. So this is 25/2 with a negative sign. And then the area here is going to be five times 5, 25/2 with a positive sign. And that's just one half base times height. To figure out the area of these um triangles. So those are going to some out to zero. So this is going to be zero for the 1st part. Look at the next part here, square both sides, Y squared equals 25 minus x square. That means that X squared plus y squared equals 25. That is a circle centered at the origin. So a circle Centered at the origin with a radius of five. As And since I'm only looking at the positive values for why it happens to be a semicircle, so pretend that that is a nice semicircle. So that is a semicircle. So what is the area going to be there? Well, what's the area of a circle? The area of the circle is pi r squared area of a semicircle is pi r squared over two. So this area is going to be the radius is five, So this area is 25 pi over to. So if you are subtracting that value, This is -25 pi Over two, final answer, -25 pi over to. So that is the exact value of this definite integral. Just using the geometry of the functions that I see there.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

$$ \text { Evaluate the integral by interpreting it in terms of areas. } $$ $$ …

01:04

Evaluate the following integrals. $$\int_{0}^{5 / 2} \frac{d x}{\sqrt{25-x^{2}}…

05:52

Evaluate the integrals. $$\int \frac{5 d x}{\sqrt{25 x^{2}-9}}, x>\frac{3}{5}$$

03:37

Calculate the integral. $\int_{-1 / 5}^{1 / 5} \frac{d x}{\sqrt{4-25 x^{2}}}$

01:26

Evaluate the following integrals. $$\int_{25}^{225} \frac{d x}{\sqrt{x^{2}+25 x…

01:50

$35-40$ Evaluate the integral by interpreting it in terms of areas. $$\int_{-5…

04:47

Use integration by parts to evaluate the given integral. $$ \int \frac{x}{\sqrt…

03:03

Use a change of variables to evaluate the following definite integrals. $$\int_…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started