Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int \f…

05:09

Question

Answered step-by-step

Problem 8 Easy Difficulty

Evaluate the integral.

$ \displaystyle \int \frac{3t - 2}{t + 1}\ dt $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 4

Integration of Rational Functions by Partial Fractions

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

00:55

Evaluate the integral.
…

01:53

Evaluate the integral.

…

01:46

Evaluate the definite inte…

01:25

Evaluate the integral.
…

03:28

Evaluate $\int_{0}^{3}\lef…

01:50

Evaluate the integral.
…

01:37

Evaluate the following int…

02:38

Evaluate the following int…

01:58

Evaluate the following int…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

Let's evaluate the integral of three T minus two over T plus one. Look, First thing I noticed is that the numerator has degree. One denominator also has degree one. And whenever the numerator has degree greater than or equal to the denominator, we should do long division. So here three teen, divine and bitey is three. Multiply out that three subject, we have minus five. So all the are doing here is rewriting this original fraction. The question was three and then the remainder was minus five and then we have our original quotient on the bottom. Now for this integral. It may help you to use U substitution here if that plus one is bothering you. But in either case, the first enroll. So we have three t and then for the second one will have minus five natural log he plus one and then plus your constancy of integration. And there's our answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
67
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
44
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

00:55

Evaluate the integral. $\int \frac{3 t-2}{t+1} d t$

01:53

Evaluate the integral. $ \displaystyle \int_0^1 \frac{1 + 12t}{1 + 3t}\ dt $

01:46

Evaluate the definite integral. $$ \int_{0}^{3}\left\|t \mathbf{i}+t^{2} \mathb…

01:25

Evaluate the integral. $$ \int \frac{3 t-2}{t+1} d t $$

03:28

Evaluate $\int_{0}^{3}\left\|t \mathbf{i}+t^{2} \mathbf{j}\right\| d t$

01:50

Evaluate the integral. $$ \int \frac{t+1}{t^{2}+2 t+4} d t $$

01:37

Evaluate the following integrals. $$\int \frac{2}{t^{3}(t+1)} d t$$

02:38

Evaluate the following integrals. $$\int \frac{t^{3}-2}{t+1} d t$$

01:58

Evaluate the following integrals. $$\int \frac{t^{3}-2}{t+1} d t$$
Additional Mathematics Questions

00:19

Which of the following rational number is in standard form? (a) -30/72 (b)5…

01:00

15. If you're on a diet and have a breakfast consisting of 150 calories…

03:12

Que 5 - Explain the Gauss Elimination method and solve the system
10x + y…

02:08

if 274 is of the form 5q+4for an integer q then find the value of q

03:35

If m and n are the zeroes of the polynomial 3x^2+11x-4, find the value of m…

01:47

what is the largest 4 digit number which when divided by 11 leaves remainder…

01:16

One acute angle of a right triangle is 12 more than twice the other acute an…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started