Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int \f…

05:16

Question

Answered step-by-step

Problem 9 Medium Difficulty

Evaluate the integral.

$ \displaystyle \int \frac{5x + 1}{(2x + 1)(x - 1)}\ dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 4

Integration of Rational Functions by Partial Fractions

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

02:15

Evaluate the integral.
…

01:03

Evaluate the definite inte…

01:50

Evaluate the definite inte…

01:33

Evaluate the integral.
…

03:06

Evaluate the integrals.

02:47

Evaluate the integral.

…

02:05

Evaluate the integral.

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

Let's evaluate the following integral and let's go ahead and take the fraction inside the inte grant and go ahead and rewrite this using partial fraction decomposition. This is what the textbook would call case one. We have distinct linear factors in the denominator, so we can rewrite. This is a over two X plus one plus B over X minus one and then let's go ahead and multiply both sides by the denominator two X plus one x minus one. So we multiply on the left, the two X plus water and the X minus ones will cancel. So we're left with five x plus one on the right, where we multiply by this fraction by this product of linear polynomial. The two x plus ones will cancel when we multiply A. So we have a X minus one and then similarly for B, the X minus ones will cancel. And so we left over with two X plus one. So let's go ahead and rewrite the right hand side. So let's factor out an X here, and then we have a and then to be, and then we have B minus a. So if these two expressions are equal, then that must mean that the terms in front of the X term are equal and also that the constant terms are equal. So this gives us two equations. We have a plus to be equals five. But then we also have that B minus A is one. So we have a two by two system for A and B. Let's go ahead and solve that many ways To solve this one way is to just take this equation over here in green, solid for B and then go ahead and plug this be value into the other equation. So if we do that a plus to be replace, be with one plus a this is equal to five. But then we can go ahead and simplify this. We have three a equals five minus two. So that means a is one. And then using this equation over here, we also get that B as to so I'm running out of room here, let me go into the next page. So now the next thing, actually, before that what we should do here is go ahead and replace a and B with the values that we found. So now We'll replace A and B with one and two and then we'll integrate. Instead of integrating the left hand side, we'll go ahead and integrate the right hand side. So we have a was equal to one and then be was equal to two and now we have two. Integral to deal with. It may help you here to use a U sub. If you'd like to use the use up here, you can let you be two x plus one for this integral here. If you don't like that minus one on the X, you can go ahead and do another sub here. Let's do w this time then D w equals d X do u equals two d X so you can go ahead and carry out the U substitution here to evaluate this Integral. In either case, we are going to see natural algorithm. So for the first in overall, we get the one half natural log Absolute value two x plus one and for the second, integral to natural log Absolute value, X minus one plus our constancy. And that's our answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
71
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
47
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

02:15

Evaluate the integral. $$\int \frac{5 x+1}{(2 x+1)(x-1)} d x$$

01:03

Evaluate the definite integral. $ \displaystyle \int^3_0 \frac{dx}{5x + 1} $

01:50

Evaluate the definite integral. $$ \int_{1}^{5} \frac{x-1}{x^{2}(x+1)} d x $$

01:33

Evaluate the integral. $\int \frac{d x}{x(2 x+1)}$

03:06

Evaluate the integrals. $$\int(x+1)^{2}(1-x)^{5} d x$$

02:47

Evaluate the integral. $ \displaystyle \int \frac{x^5 + x - 1}{x^3 + 1}\ dx $

02:05

Evaluate the integral. $ \displaystyle \int^{1}_{0} (5x - 5^x) \,dx $
Additional Mathematics Questions

04:34

Consider the situation of a mass layoff (i.e., a factory shuts down) where 1…

03:55

Since the 3 -space is spanned by the three unit vectors defined in $(4.7),$ …

03:11

In the three-dimensional Euclidean space, what is the distance between the f…

03:01

Given the function $q=\left(v^{2}+v-56\right) /(v-7),(v \neq 7),$ find the l…

01:37

Given the total-cost function $C=Q^{3}-5 Q^{2}+12 Q+75$, write out a variabl…

01:35

Given the following four matrices, test whether any one of them is the inver…

04:11

On the basis of $(7.18),$ find the partial derivatives $\partial Y^{*} / \pa…

04:14

Are the following functions quasiconcave? Strictly so? First check graphical…

01:47

Let the demand and supply be $Q_{d}=\alpha-\beta P+\sigma \frac{d P}{d t} \q…

03:06

Find the product matrices in the following (in each case, append beneath eve…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started